

UNIVERSIDAD ANDRÉS BELLO

Facultad de Ingeniería Carrera de Geología

# EVOLUCIÓN ESPACIO-TEMPORAL RECIENTE DE LA MORFOESTRATIGRAFÍA EN UNA PLANICIE DE CORDONES LITORALES AFECTADA POR SUBSIDENCIA COSISMICA DURANTE EL TERREMOTO DE 1960 Mw 9.5, CHILE.

Tesis de pregrado para optar al título de Geólogo

Gino Jovannie Figueroa Barra

Profesores guía:

Cristian Rodrigo Ramírez

Profesores co-guía:

Marco Cisternas Vega

Viña del Mar, Chile. 2018

## Resumen

Los cordones litorales son morfologías típicas de bermas y dunas de playas con elevaciones mayores en la topografía, se han propuesto como indicadores de la historia pasada del nivel del mar, eventos catastróficos y cambios climáticos. Como resultado de ~1,5 m de subsidencia cosismica asociada al terremoto de Valdivia de 1960, Chile Mw 9,5, la línea de costa de Pangal, Región de los Lagos, una planicie de cordones litorales localizada a la mitad del largo del área que se hundió en 1960, retrocedió ~330 m producto de un proceso erosivo que perduró hasta el año 1980. A partir de este año, la costa comienza a progradar hacia el océano construyendo un conjunto de cordones litorales y una amplia playa. Hasta el año 2016, la línea de costa no ha recuperado su posición inicial previa a 1960, encontrándose actualmente en un proceso de recuperación.

La evolución geomorfológica de la playa de Pangal fue inferida usando un conjunto de fotografías aéreas pre y post-1960, con imágenes satelitales más recientes. Mientras que los perfiles topográficos se crearon usando un nivel topográfico y un sistema de posicionamiento global diferencial (DGPS), la superficie topográfica creada por fotogrametría usando un dron. Se relacionaron todos los datos de elevación con el nivel del mar local estimado, midiendo el nivel del mar continuamente por una semana con un mareógrafo acústico portátil. La estratigrafía del área que fue erosionada y recuperada después de 1980 fue realizada desde perforaciones con barrenos y excavación con palas. Adicionalmente, se realizaron perfiles con radar de penetración terrestre (GPR) usando una antena con una frecuencia de 250 MHz.

Los resultados permiten caracterizar los efectos geomorfológicos y estratigráficos en la línea de costa generados por el hundimiento cosísmico en 1960. La formación de un nuevo cordón litoral en la zona intermareal a supramareal producto de la progradación de la costa, preservando suelos enterrados y una capa de tsunami en el máximo retroceso ocurrido en el año 1980, son evidencias de un proceso de subsidencia cosísmica. Estas características junto a escarpes erosivos están ahora enterradas bajo el cordón litoral más atrás de la costa construido y abandonado después de 1980. Cabe mencionar que toda esta evolución ha ocurrió sin un cambio vertical evidente en el nivel de la costa posterior a 1960. Debido a que los rastros dejados son claros, los escarpes y suelos enterrados bajo los cordones litorales proveen un análogo moderno para características similares encontradas tierra adentro.

# Agradecimientos

Agradecer el apoyo constante de toda mi familia, en particular a mi Viviana Barra (madre), Hugo Figueroa (padre), Paul Figueroa (hermano), Isis Figueroa (sobrina) y Santino Figueroa (sobrino) que en el camino del aprendizaje universitario trajeron alegría y aliento para continuar estudiando, en todos los momentos de logros y dificultades. Gran parte de la energía y motivación por aprender viene de la enseñanza en casa, de los consejos de superación y esfuerzo. Desde pequeño me acompañaron y alentaron mis ganas de aprender de la naturaleza y el planeta tierra, desde un simple regalo como rocas y árboles, hasta un microscopio de juguete.

En el camino de la educación superior, que comenzó en la Universidad de Atacama en la misma carrera universitaria que hoy culminó con esta investigación, conocí y aprendí de muchas personas. Agradecer los momentos compartidos a Verónica Valdés, Camila Muñoz, Rodolfo Molina, Cesar Hernández, Rodrigo Flores, Camila Pinto, entre otras personas. A aquello(a)s profesore(a)s que me entregaron todo su conocimiento en ciencias de la ingeniería y bases de la Geología, Dr. Wolfgang Griem, Leticia Campos, Juan Chamorro, Julio Vera, y un sin fin de académicos de la Universidad de Atacama.

Por otra parte, en mi segunda etapa de la carrera, a todos los que conocí y me acogieron en mi traslado a la Universidad Andrés Bello, casa de estudio desde la que hoy salgo como Geólogo. A mis amigo(a)s, Verónica Valdés, Gabriela Ramírez, Fabiola Romero, Felipe Valenzuela, Camilo Guzmán, Byron Villagrán, entre otros. A lo(a)s profesore(a)s, Ximena Contardo, Sergio Calderón, Francisco Fernandoy, Cristian Rodrigo, Iván Vargas que me transmitieron su conocimiento y experiencia de vida, para ser un profesional competente y con ética. Además, a todas las personas que conocí en mi formación profesional, al equipo de dendrocronología PUCV, en especial Isabella Aguilera, Ariel Muñoz e Isadora Toledo y al laboratorio de Geología de Tsunamis PUCV, Cyntia Mizobe, Monica Paez y el profesor Marco Cisternas.

Esta investigación ha sido financiada por el Núcleo Científico Milenio "CYCLO: The Seismic Cycle along subduction Zones" (NC160025), y el proyecto FONDECYT N° 1150321: "Recurrencia de grandes terremotos y tsunamis en Chile Metropolitano".

## Tabla de contenidos

| Resumen                                                    | 11 |
|------------------------------------------------------------|----|
| I. INTRODUCCIÓN                                            | 1  |
| 1.1 Planteamiento del problema                             | 1  |
| 1.2 Objetivos                                              | 3  |
| 1.2.1 Objetivo General                                     | 3  |
| 1.2.2 Objetivos específicos                                | 3  |
| 1.3 Hipótesis de trabajo                                   | 4  |
| 1.4 Ubicación y accesos                                    | 4  |
| 1.5 Trabajos previos                                       | 5  |
| II. MARCO TEÓRICO                                          | 8  |
| 2.1 El ciclo sísmico y la paleosismología                  | 8  |
| 2.2 Geomorfología costera y cordones litorales1            | 0  |
| 2.3 Contexto Sismotectónico1                               | 3  |
| 2.3 Antecedentes Geológicos1                               | 6  |
| 2.3.1 Holoceno 1                                           | 7  |
| 2.3.2 Pleistoceno Superior-Holoceno1                       | 8  |
| 2.3.3 Pleistoceno 1                                        | 8  |
| 2.3.4 Oligoceno-Plioceno1                                  | 9  |
| III METODOLOGÍAS 2                                         | 20 |
| 3.1 Caracterización y descripciones estratigráficas 2      | 20 |
| 3.1.1 Granulometría de sedimentos 2                        | 22 |
| 3.2 Sistema de Posicionamiento Global Diferencial (DGPS) 2 | 24 |
| 3.2.1 Nivel medio del mar local 2                          | 27 |
| 3.3 Sistema de información y teledetección (SIG) 2         | 27 |
| 3.3.1 Fotografías aéreas e imágenes satelitales 2          | 28 |
| 3.3.2 Modelo de elevación digital 3                        | 31 |
| 3.3.3 Sistema digital de análisis de línea de costa        | 32 |
| 3.3.4 Herramienta Topographic Swath o Swath Profile        | 34 |
| 3.4 Radar de penetración terrestre (GPR) 3                 | 35 |
| IV RESULTADOS                                              | 38 |

| 4.1 Cordo                                        | 4.1 Cordones litorales en la planicie de Pangal                                                      |      |  |  |  |  |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------|------|--|--|--|--|
| 4.1.1 Ca                                         | ambios horizontales de la línea de costa desde 1944 hasta el 2                                       | 2016 |  |  |  |  |
| 4.1.2 Co                                         | ordones litorales formados posterior al año 1980                                                     | 43   |  |  |  |  |
| 4.1.3 Morfología de cordones litorales recientes |                                                                                                      |      |  |  |  |  |
| 4.2 Ambie                                        | entes depositacionales recientes y granulometría                                                     | 49   |  |  |  |  |
| 4.2.1 Intermareal inferior                       |                                                                                                      |      |  |  |  |  |
| 4.2.2 Intermareal superior                       |                                                                                                      |      |  |  |  |  |
| 4.2.3 Dunas de trascosta                         |                                                                                                      |      |  |  |  |  |
| 4.2.4 Lla                                        | 4.2.4 Llanura de marea                                                                               |      |  |  |  |  |
| 2.5 Aná                                          | 2.5 Análisis bivariado de sedimentos                                                                 |      |  |  |  |  |
| 4.3 Descri                                       | 4.3 Descripción litológica del Cordón litoral A6                                                     |      |  |  |  |  |
| 4.4 Estruc                                       | 4.4 Estructuras sedimentarias internas                                                               |      |  |  |  |  |
| V DISCUSIÓ                                       | ÓN                                                                                                   | 74   |  |  |  |  |
| 5.1 Evolue                                       | ción temporal de la línea de costa                                                                   | 74   |  |  |  |  |
| 5.2 Evento                                       | os catastróficos y construcción de cordones litorales                                                | 77   |  |  |  |  |
| 5.2.1 Ca                                         | ambios relativos del nivel del mar                                                                   | 77   |  |  |  |  |
| 5.2.2 Er                                         | rosión y depositación por tsunami                                                                    | 79   |  |  |  |  |
| 5.3 Factor                                       | 5.3 Factores de formación y modificación de cordones litorales                                       |      |  |  |  |  |
| VI CONCLU                                        | SIONES                                                                                               | 83   |  |  |  |  |
| VII REFERE                                       | NCIAS                                                                                                | 85   |  |  |  |  |
| VIII ANEXO                                       | S                                                                                                    | 89   |  |  |  |  |
| ANEXO 1                                          | Guía de Protocolo Instalación GPS                                                                    | 89   |  |  |  |  |
| ANEXO 2<br>Center v.2                            | Guía protocolo procesamiento de datos en Trimble Busine<br>91                                        | ess  |  |  |  |  |
| ANEXO 3<br>aéreas e i                            | ANEXO 3 RMS en la georreferenciación y rectificación de fotografías<br>aéreas e imágenes satelitales |      |  |  |  |  |

#### Índice de Figuras

- Figura 1. Planicie de cordones litorales en la desembocadura del Río Maullín. 2

Figura 5. Sub-ambientes según la dinámica dentro de un ambiente litoral..... 11

Figura 11. Mapa geológico Maullín, modificado de Antinao et al. (2000)...... 16

- Figura 14. Ubicación de las muestras de sedimentos para una caracterización y descripción general de los distintos ambientes sedimentarios actuales.... 21

- Figura 22. Imágenes satelitales de Google Earth año 2016 y 2011 con una alta resolución, obtenidas desde empresas como DigitalGlobe y CNES/Airbus.

- Figura 24. Modelos de elevación digital. a) Obtenido desde datos de elevación 2016 del SHOA. b) Obtenido desde datos de elevación 2015 de un dron en terreno.
  32
- Figura 26. Ubicación del sitio Dadi con el transecto del GPR para la calibración del equipo. Afloramiento de depósitos arenosos y capa superficial de suelo, donde se ha calibrado el GPR (P94) con una referencia de materiales de acero enterrados a 1 m de profundidad desde la superficie, en sector Dadi.

- Figura 29. Franja topográfica en el área norte de la planicie de Pangal. ....... 39
- Figura 31. Evolución de la línea de costa desde el año 1944 hasta el 2016, con dos tendencias lineales marcando dos periodos de avance y retroceso... 40

- Figura 41. Perfil de playa de Pangal indicándose los sub-ambientes que lo componen. a) Fotografía tomada desde el área sur hacia el área norte del frente de playa. b) Perfil topográfico realizado en el área central del frente de playa. 49
- Figura 43. Zona intermareal inferior donde se observa el nivel de la marea baja.

- Figura 46. a) Muestra de sedimentos M019 de la zona intermareal superior. b)
  Minerales de cuarzo. c) Minerales de cuarzo, anfíbol y fragmentos líticos. d)
  Minerales de magnetita y hematita. e) Minerales de feldespato. f) Minerales
  de magnetita y hematita en gran proporción, además de cuarzo y
  feldespatos.

- Figura 49. Río del Rey durante un periodo de marea alta y otro de marea baja.

| <b>Figura 51.</b> Distribución de los valores de asimetría (color azul), selección (color rojo), agudeza (color verde), y media (color negro) para todas las muestras de sedimentos.                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Figura 52.</b> Distribución de los datos de media versus selección para los distintos ambientes y sub-ambientes                                                                                                                                                                                                                                                                                                                                                  |
| Figura 53. Distribución de los datos de media versus asimetría para los distintos ambientes y sub-ambientes                                                                                                                                                                                                                                                                                                                                                         |
| <b>Figura 54.</b> Distribución de los datos de media versus agudeza para los distintos ambientes y sub-ambientes                                                                                                                                                                                                                                                                                                                                                    |
| Figura 55. Distribución de los datos de selección versus asimetría para los distintos ambientes y sub-ambientes                                                                                                                                                                                                                                                                                                                                                     |
| Figura 56. Distribución de los datos de selección versus agudeza para los distintos ambientes y sub-ambientes                                                                                                                                                                                                                                                                                                                                                       |
| Figura 57. Distribución de los datos de agudeza versus asimetría para los distintos ambientes y sub-ambientes                                                                                                                                                                                                                                                                                                                                                       |
| <b>Figura 58.</b> Morfoestratigrafía del primer cordón litoral formado posterior al terremoto de 1960. a) Ubicación de la planicie de cordones litorales de Pangal. b) Línea de perfil topográfico. c) Topografía realizada con dGPS. d) Fotografía del frente de playa de Pangal. e) Estratigrafía del cordón litoral A. f) Marea determinada a partir del modelo 8 Atlas TPXO. g y h) Detalle de la estratigrafía en subsuelo a partir de fosas realizadas a pala |
| Figura 59. Fosa realizada con pala de mano se observa la estratigrafía bajo el                                                                                                                                                                                                                                                                                                                                                                                      |
| cordón litoral A, y las muestras de sedimento obtenidas                                                                                                                                                                                                                                                                                                                                                                                                             |
| <b>Figura 60.</b> Distribución granulométrica de los distintos ambientes con la muestra M011, similar a un depósito de la zona intermareal superior                                                                                                                                                                                                                                                                                                                 |

- Figura 64. Distribución granulométrica de los distintos ambientes con la muestra M013, no se asemeja a ningún depósito de los ambientes actuales....... 66
- **Figura 65.** Distribución granulométrica de los distintos ambientes con la muestra M014, no se asemeja a ningún depósito de los ambientes actuales....... 66

- **Figura 70.** Interpretación de radargrama P72, identificando capas paralelas y discordantes, superficie erosiva y nivel freático a 3 m de profundidad...... 71

| Figura 72. Interpretación de radargrama P73, se identifica una capa superficial |  |  |  |  |  |  |
|---------------------------------------------------------------------------------|--|--|--|--|--|--|
| continua y capas intermedias truncadas, con un fuerte reflector en              |  |  |  |  |  |  |
| profundidad marcando el nivel freático73                                        |  |  |  |  |  |  |
| Figura 73. Modelo conceptual de la condición previa y efectos durante el        |  |  |  |  |  |  |
| terremoto en la planicie de cordones litorales de Pangal                        |  |  |  |  |  |  |
| Figura 74. Modelo conceptual de la progradación en la planicie de Pangal        |  |  |  |  |  |  |
| durante los últimos años76                                                      |  |  |  |  |  |  |
| Figura 75. Extracto de la carta náutica del SHOA, con datos actualizados al año |  |  |  |  |  |  |
| 1954                                                                            |  |  |  |  |  |  |
| Figura 76. Extracto de la carta náutica del SHOA, con datos actualizados al año |  |  |  |  |  |  |

# Índice de Tablas

| <b>Tabla 1.</b> Muestras de sedimentos de la planicie de cordones litorales de Pangal.         22                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tabla 2. Datos de estaciones GPS, utilizadas para el procesamiento y corrección de los perfiles continuos y puntos estáticos.       26                                              |
| <b>Tabla 3.</b> Resumen de las fotografías aéreas e imágenes satelitales utilizadas. Sedetalla la cantidad de puntos de control utilizados para la georreferenciacióny el error RMS |
| Tabla 4. Promedio de las diferencias entre los valores de los modelos de elevación digital Dron y SHOA, con respecto a puntos medidos de DGPS.                                      |
| Tabla 5. Fecha y longitud de las líneas de costa delineadas.       34                                                                                                               |
| Tabla 6. Resultados del análisis de cambio en la línea de costa utilizando el DSAS.         42                                                                                      |
| Tabla 7. Correlaciones de Pearson entre las variables: media, selección,asimetría y agudeza. Valores de p<0.05 son correlaciones significativas. 57                                 |

# I. INTRODUCCIÓN

#### 1.1 Planteamiento del problema

Los *beach ridges* (cordones litorales) son relieves terrestre desarrollados en ambientes de playa arenosa o de grava, que describen morfologías típicas de bermas o crestas de mayor altura a las adyacentes (Dabrio, 2010). Sin embargo, el término no hace referencia a su origen de formación, proponiéndose dos procesos principales para su génesis: la acción de las mareas y el viento (Otvos, 2000). Estudios recientes, proponen a los cordones litorales como indicadores de la historia pasada del nivel del mar, eventos catastróficos y cambios climáticos (Tamura, 2012). Por lo tanto, cada una de las series tiene un registro único de los procesos y factores particulares que condicionan su formación.

En el área del terremoto de Valdivia de 1960, Chile, magnitud 9.5 Mw (Kanamori, 1977), se han realizado diversos estudios paleosísmicos, siendo una de las principales finalidades determinar la recurrencia de grandes terremotos. Este evento fue el resultado de una ruptura de *thrust fault* con aproximadamente 1.000 km de largo y 60 km de ancho (Plafker & Savage, 1970), y se ha posicionado como el evento telúrico más grande registrado en la historia humana. Las investigaciones en el segmento sísmico de este terremoto (que abarca desde la península de Arauco hasta la península de Taitao), han reconstruido la historia sísmica a partir de: el registro histórico (Lomnitz, 1970; Lomnitz 2004; Cisternas *et al.*, 2005), suelos enterrados en marismas costeras (Garrett *et al.*, 2015; Nentwig *et al.*, 2015; Cisternas *et al.*, 2017), diatomeas (Garrett *et al.*, 2015), sismoturbiditas (St-Onge *et al.*, 2012; Moernaut *et al.*, 2013). Estos estudios han demostrado la ciclicidad y recurrencia de eventos sísmicos de gran magnitud en el área.

Cisternas *et al.* (2017) han propuesto que una serie de cordones litorales, junto a suelos enterrados desarrollados en la planicie costera de Maullín, Región de los Lagos, Chile (Figura 1), son el resultado de una secuencia de eventos de subsidencia co-sísmica y un posible alzamiento inter-sísmico en el último milenio. El principal razonamiento, para este tipo de interpretaciones proviene del uniformismo, planteado y desarrollado por James Hutton y Charles Lyell: "El presente es la clave del pasado". Sin embargo, la formación de estos cordones litorales es producto de una diversa variedad de procesos que dependen de cada ambiente tectónico, sedimentario, climático y geomorfológico.



Figura 1. Planicie de cordones litorales en la desembocadura del Río Maullín.

En esta investigación se reconstruye la evolución espacio-temporal de una serie de cordones litorales creados posterior al terremoto de 1960 Chile, proponiendo un análogo moderno para la serie de cordones más antiguos, encontrados tierra adentro de la planicie. Se dará una respuesta a la pregunta, ¿Cuáles son los efectos de la subsidencia cosismica durante el terremoto de 1960 causados en

la morfoestratigrafía de la línea de costa de la planicie de cordones litorales de Pangal?, teniendo presente que son un conjunto de procesos litorales los que actúan en su formación. Finalmente, se propone como una nueva evidencia paleosísmica en la reconstrucción de la historia y recurrencia de grandes eventos, para el segmento de ruptura del terremoto de 1960.

## 1.2 Objetivos

## 1.2.1 Objetivo General

Reconstruir la evolución espacio-temporal desde el año 1944 hasta el 2016 en la línea de costa de la planicie de cordones litorales de Pangal afectada por subsidencia cosismica en el terremoto de 1960, generando un análogo moderno para estudios paleosísmicos.

## 1.2.2 Objetivos específicos

- Detectar las series de cordones litorales formados en la planicie costera de Pangal.
- Establecer las distribuciones espacio-temporales de los relieves terrestres generados en la línea de costa posterior al terremoto de 1960.
- Reconocer estructuras internas de erosión a pequeña y gran escala de los cordones litorales, asociados a procesos erosivos producto de subsidencia y eventos de tsunamis.
- Establecer los factores de formación y modificación de los cordones litorales.

## 1.3 Hipótesis de trabajo

Los cordones litorales desarrollados en la planicie costera arenosa de Pangal preservan suelos enterrados y escarpes de erosión, evidenciando un proceso de subsidencia cosísmica en eventos cíclicos de grandes terremotos y tsunamis asociados.

### 1.4 Ubicación y accesos

La Planicie de Pangal es la parte sur de la serie de cordones litorales desarrollados en la desembocadura del Río Maullín, ubicándose a ~3 km del poblado homónimo del río (Figura 2). Maullín es un pueblo de la Región de los Lagos, Chile, que se encuentra a ~60 km de la ciudad de Puerto Montt, localizado dentro del área de ruptura del terremoto de Valdivia de 1960. Se puede acceder desde Puerto Montt hacia Maullín por la Panamerica Sur/Ruta 5, y continuar hacia V-90 en dirección a Gaspar del Rio en Maullín. Otra alternativa es ir desde Puerto Montt por la ruta V-60, hacia V-46 en dirección a La Pasada y realizar un transbordo en barcazas hacia Maullín. Alrededor de la planicie costera de Maullín, se localizan otros pueblos entre los que es importante mencionar: Carrizo, La Pasada, Chuyaquen y Dadi.



Figura 2. Ubicación del área de estudio, se destacan los pueblos principales cercanos a la planicie de Pangal: Maullín, La Pasada, Carrizo, Chuyaquen y Dadi.

### 1.5 Trabajos previos

Las principales investigaciones realizadas en el área de estudio y sobre la temática general son las siguientes:

• Investigaciones en el área de estudio:

Atwater *et al.* (1992) reporta a lo largo de la costa del Pacifico cercana a Maullín y Carelmapu, una emergencia neta en el Holoceno tardío evidenciada por depósitos intermareales. A pesar de la emergencia neta, para cuatro sitios: Chocoi, Dadi, Puente Cariquilda, y Río Ballenar, identifica un hundimiento de 1-2 m de subsidencia tectónica durante el terremoto de Valdivia de 1960. Concluyendo que, la emergencia neta, se debe probablemente a un alzamiento cíclico desde la acumulación de esfuerzo elástico entre terremotos y alzamiento desde la carga postglacial del piso oceánico.

Cisternas *et al.* (2005) reconstruyeron la historia sísmica para los últimos 2.000 años de subsidencia repetitiva y tsunamis en el estuario del Río Maullín. Proveyendo evidencia estratigráfica y paleoecológica para siete terremotos pre-1960. Interpretaron dos edades por radiocarbono para los eventos: 1020-1180 A.D. y 1280-1390 A.D., además de correlacionar el registro paleosísmico con los predecesores históricos de 1575, 1737 y 1837.

Atwater *et al.* (2013) identificaron el tsunami de 1960 mediante capas de arenas preservada bajo abanicos, los cuales fueron construidos por *breaches* en la planicie de cordones litorales cerca de Maullín. Los depósitos del abanico son trazables 120 m tierra adentro desde los *breaches* y con un espesor suficiente para preservar capas de tsunamis por más tiempo que una capa ordinaria.

Cisternas *et al.* (2017) evidencian en la planicie costera cercana a Maullín una rápida subsidencia en 1960, con una fuerte retrogradación de la cara frontal. Interpretando la formación de escarpes, suelos enterrados y cordones litorales como una serie de eventos de subsidencia cosísmica y un posible alzamiento intersísmico, durante el último milenio.

• Investigaciones sobre la temática general en el mundo:

Meyers *et al.* (1996) proponen un método para determinar la edad y frecuencia de subsidencia cosísmica asociada a terremotos de subducción en Willapa barrier, Washington durante el holoceno tardío. Utilizando datos de radar de penetración terrestre interpretan la formación de escarpes enterrados y la asociación de capas de minerales pesados como resultado de eventos erosionales, hipotetizando la subsidencia del continente por terremotos y el conjunto de la acción del oleaje como la causa de estos.

Kelsey *et al.* (2015) identifico evidencia de terremotos de subducción predecesores del terremoto de 1964, Alaska, en dos sitios costeros de la parte este del segmento de Kenai. Concluyendo que cordones litorales en Verdant Cove, y suelos enterrados en humedales costeros de Quicksand Cove son los indicadores primarios de eventos sísmicos de subsidencia por subducción.

Monecke *et al.* (2015) por medio de imágenes satelitales y un levantamiento topográfico, reconstruyo la formación de un nuevo cordón litoral a lo largo de 10 km de extensión al oeste de la costa Acehnese, Indonesia. Playa que durante el gran terremoto de Sumatra-Andaman y el sucesivo tsunami en diciembre del 2004, fue totalmente destruida.

Simms *et al.* (2017) realizan una estimación cuantitativa de erosión costera desde subsidencia cosísmica y erosión por tsunami prehistórica en la costa de Crescent City (zona de subducción de Cascadia). Mediante el estudio de radar de penetración terrestre y datación por luminiscencia estimulada ópticamente, construyen un modelo de subsidencia cosísmica y el impacto de tsunamis registrado en secciones estratigráficas.

Dougherty (2018) utiliza radar de penetración terrestre para ilustrar las facies de estructuras en un sistema de barrera compuesto en la Bahia Bream, Nueva Zelanda. Utilizando la comprensión de la dinámica costera documentada sobre décadas para determinar el impacto de tormentas sobre siglos y el cambio del nivel del mar en los últimos milenios.

# **II. MARCO TEÓRICO**

### 2.1 El ciclo sísmico y la paleosismología

Los dos modelos teóricos importantes de comprender para el presente estudio (y para toda zona sismogénica), son la segmentación de las fallas y el ciclo de deformación por terremotos (ciclo sísmico). La segmentación de las fallas se basa en la delimitación de la zona de ruptura del terremoto, basado en características físicas y geológicas. Esta zona, corresponde al área donde se produce el evento sísmico y por donde se propaga la falla. Mientras que, el ciclo sísmico se caracteriza por estar compuesto de dos etapas principales (Figura 3), una de ellas durante el desarrollo de un terremoto, liberándose la deformación previamente acumulada (etapa cosísmica), y la que ocurre entre dos eventos sísmicos grandes, en donde se acumula deformación (etapa intersísmica).



Figura 3. Ilustración del ciclo sísmico representado por la etapa cosísmica e intersísmica, basado en el ciclo idealizado de Reid (1910) y una interpretación aleatoria de la máxima deformación.

La paleosismología es el estudio de terremotos pasados por medio de evidencias geológicas: primarias, producidas por el movimiento de la falla durante el terremoto; y secundarias, producidas por el sacudimiento durante el terremoto o por erosión y/o depositación en respuesta a la sacudida y cambios cosísmicos de elevación (McCalpin & Nelson, 2009). Se centra en la caracterización de la deformación instantánea del relieve terrestre y los sedimentos durante los terremotos, además de precisar la localización, el tiempo y el tamaño del evento. Estos estudios permiten la reconstrucción hacia el pasado de terremotos no registrados por la historia e instrumentos modernos, pero que han sido preservados como evidencias paleosísmicas, ya sea en el registro del relieve terrestre (geomorfológicos) o depósitos y estructuras sedimentarias (estratigráficos).

El relieve terrestre y los depósitos formados durante un evento sísmico son descritos como cosísmicos y se pueden diferenciar de otras características formadas por erosión, depositación y deformación no relacionada a terremotos. Sin embargo, desde evidencias primarias es menos compleja su diferenciación que desde evidencias secundarias. En algunos lugares, la respuesta de los sistemas geomorfológicos al evento sísmico comienza posteriormente, variando su duración desde minutos, horas, años o décadas (Kelsey et al., 2015; K. Monecke et al., 2017). Ejemplos de estas variaciones temporales son el desarrollo de escarpes de fallas, de depósitos de tsunami, de terrazas marinas, de cordones litorales, entro otros.

Por medio de metodologías de ciencias como la geomorfología, estratigrafía y geofísica es posible buscar evidencias de terremotos pasados en lugares de gran complejidad geológica. Por una parte, cuando no existe el acceso a información del subsuelo, mediante la geofísica podemos interpretar estructuras y características de evidencias paleosísmicas que no afloran en superficie. Un lugar paleosísmico favorable es aquel en el cual se preservan tanto registros geomorfológicos, como estratigráficos. Siendo clave la utilización del conjunto de

estas metodologías, para la obtención de una buena reconstrucción e interpretación de eventos sísmicos pasados.

### 2.2 Geomorfología costera y cordones litorales

El ambiente costero de la zona de estudio corresponde a una interacción entre un ambiente de playa arenosa junto a un ambiente estuarino, debido a la desembocadura del río Maullín hacia el Océano Pacífico. Existe una relación entre la morfología costera y la amplitud de las mareas (Figura 4), clasificándose tres tipos: las micromareales, mesomareales y macromareales (Dabrio, 2010). Los factores que condicionan la dinámica y los procesos costeros son principalmente el oleaje y las mareas, además de la disponibilidad de sedimento, el contexto tectónico, cambios relativos del nivel del mar y la acción antrópica.



Figura 4. Relación entre amplitud de las mareas y morfología costera, extraído de Dabrio (2010).

Dentro del ambiente litoral se observan sub-ambientes con distintas dinámicas (Figura 5), en los cuales es importante resaltar: el offshore o shoreface (zona

submareal o sublitoral), el foreshore (la zona intermareal e infralitoral: de batida o playa baja), y el backshore (zona supramareal o supralitoral: la berma y la trascosta o playa alta).



Figura 5. Sub-ambientes según la dinámica dentro de un ambiente litoral.

Los cambios en la evolución geomorfológica de zonas litorales tienen una variación en la escala espacial y temporal. Uno de los relieves terrestres más particulares del sector de estudio, son una serie de cordones litorales. Los cordones litorales, se definen como múltiples cordones, semiparalelos, relictos, originados por el oleaje (berma) o viento (múltiples dunas en la trascosta), usualmente formando planicies (Otvos, 2000). Tanner (1995) propone una hipótesis para la formación de cordones litorales, el cual se basa en la oscilación del nivel del mar asociado a cambios del nivel de la zona de batida (swash) a lo largo de costas de arena de baja energía. Sugiriendo que oscilaciones del nivel del mar a escala de décadas causa altos y bajos en el relieve. Mientras que, Tamura (2012) propone diversos procesos, con una interacción del oleaje y el viento (Figura 6). Para este trabajo se consideraran las bermas y/o dunas activas como cordones litorales debido a la rápida progradación y preservación de las morfologías tierra adentro.



Figura 6. Ilustraciones esquemáticas mostrando los procesos de formación de cordones litorales, extraído de (Tamura, 2012).

Dentro de la variación temporal tenemos procesos que actúan a distintas escalas. Por ejemplo, las olas y mareas ejercen una influencia a una escala temporal de segundos a meses. Mientras que otros fenómenos, como la oscilación del sur – El Niño (ENSO) o cambios del nivel del mar ejercen una influencia a escala de años, hasta miles o millones de años, respectivamente. En la variación espacial los procesos costeros también tienen diversas escalas, afectando áreas acotadas y otras más amplias (Figura 7).



Figura 7. Representación de las escalas espaciales y temporales que actúan en la evolución de zonas litorales, extraído de (Elorza, 2008).

#### 2.3 Contexto Sismotectónico

Chile se caracteriza por situarse dentro de una zona de subducción de la Placa de Nazca bajo la Placa Sudamericana, con una tasa de convergencia promedio de 6,6 cm/año basado en datos geodésicos (Angermann *et al.*, 1999), o de 7,4 cm/año basado en el análisis de datos paleomagnéticos del piso oceánico (DeMets *et al.*, 2010). También, se ha calculado una expansión de la dorsal del Pacífico entre las latitudes 48°-27°S, con una velocidad promedio de 4,7-6,0 cm/año (Heirtzler *et al.*, 1968; Pitman *et al.*, 1968). Este proceso conlleva a zonas sismogénicas, en las cuales se han producido eventos sísmicos de gran magnitud. Destacando el terremoto de Valdivia de 1960, un sismo de magnitud 9.5 Mw, con una ruptura de *thrust fault* con aproximadamente 1.000 km de largo y 60 km de ancho. El área de ruptura de este terremoto se extendió desde la península de Arauco (37,5°S) hasta la península de Taitao (47°S). Produciéndose hundimiento en gran parte de las zonas costeras (Figura 8).

El ciclo sísmico correspondiente a la zona de ruptura del terremoto de Valdivia tiene un intervalo de retorno promedio de 200 años aproximadamente (Figura 9

y 10), en base a datos registrados instrumentalmente, históricamente y geológicamente (Lomnitz, 1970; Lomnitz, 2004; Cisternas *et al.*, 2005; St-Onge *et al.*, 2012; Atwater *et al.*, 2013; Moernaut *et al.*, 2014; Garrett *et al.*, 2015; Nentwig *et al.*, 2015).



Figura 8. Distribución espacial de epicentros y zonas de cambios de elevación asociados al terremoto de 1960 Chile (destacan las zonas achuradas de subsidencia y alzamiento), extraído de (Plafker & Savage, 1970).



Figura 9. Comparación entre datación por depósitos de tsunami y registros históricos y prehistóricos de sacudidas, subsidencia cosísmica y depositación de tsunamis, extraído de (Kempf et al., 2017).



Figura 10. Comparación cronológica, desde el norte a sur, de evidencia de terremotos y tsunamis a lo largo de la región de ruptura del terremoto de 1960, extraído de (Cisternas *et al.*, 2017).

## 2.3 Antecedentes Geológicos

La cuenca del Río Maullín está conformada por unidades sedimentarias del Pleistoceno-Holoceno caracterizadas por depósitos morrénicos, fluvioglaciales y glaciolacustres (Diagnóstico, 2004). Estos depósitos se asocian a las glaciaciones del Pleistoceno, principalmente a las glaciaciones Llanquihue y Sta María. Aparte de la influencia en el relieve ejercida por las glaciaciones del Pleistoceno, destacan los volcanes Osorno y Calbuco con una gran influencia dentro de la cuenca del Río Maullín.



Figura 11. Mapa geológico Maullín, modificado de Antinao et al. (2000).

La planicie de Pangal está constituida por depósitos sedimentarios no consolidados del holoceno. Correspondientes a depósitos litorales de arenas bien seleccionadas y redondeadas, además de depósitos eólicos de arena de grano medio a fino, bien seleccionadas. Se han reportado edades de radiocarbono de 2.120 - 3.000 años de antigüedad en materia orgánica de suelos enterrados bajo estos depósitos, en el sitio Dadi (Atwater *et al.*, 1992). Los depósitos litorales sobreyacen a depósitos fluvioglaciares de la glaciación Llanquihue, sometidos a un levantamiento a largo plazo asociado a la desglaciación y/o tectónica (Antinao *et al.*, 2000).

#### 2.3.1 Holoceno

Depósitos Estuarinos (He), descritas por Antinao *et al.* (2000) como depósitos no consolidados de arenas finas, limos y arcillas macizas, conforman terrazas bajas de interacción con mareas, que ocupan cauces labrados por ríos de desague glacial y postglacial. Se reconoce una capa de tsunami correspondiente al tsunami de 1960 (Cisternas *et al.*, 2000). Además, Cisternas *et al.* (2005) reporta suelos enterrados bajo estos depósitos, y capas de tsunamis originadas por una secuencia de siete terremotos predecesores al de 1960.

Depósitos Eólicos (Heo), descritas por Antinao *et al.* (2000) como depósitos no consolidados de arenas de grano medio a fino, bien seleccionadas, ubicadas detrás de la zona de playa actual, cerca de la desembocadura del Río Maullín y San Pedro Nolasco. Los sedimentos muestran estratificación planar horizontal y, en algunos lugares, estratos inclinados, separados por superficies de erosión.

Depósitos Litorales (Hp), descritas por Antinao *et al.* (2000) como depósitos no consolidados de arenas y gravas, bien seleccionadas, con clastos redondeados, que poseen formas esféricas y discoidales. Estos depósitos presentan estratificación maciza, planar horizontal, con imbricación buzante al mar. Los clastos están conformados principalmente por cuarzo y rocas volcánicas y, en

menor proporción, por rocas metamórficas e intrusivas. Formados por agradación originada por el continuo oleaje.

### 2.3.2 Pleistoceno Superior-Holoceno

Depósitos Fluviales (PIHf), descritos por Antinao *et al.* (2000) como depósitos no consolidados de gravas con buena a moderada selección, bien redondeadas y, en parte, imbricadas con matriz de arena gruesa. Presentan estratificación planar horizontal, cruzada y granodecreciente hasta limos laminados. Estos sedimentos cubren depósitos glaciales y glaciofluviales de la Glaciación Llanquihue y rellenan, en parte, los canales de desagüe glacial que provienen de los cordones morrénicos.

### 2.3.3 Pleistoceno

Depósitos Glaciofluviales (Plgf1), descritos por Antinao *et al.* (2000), estos depósitos alcanzan espesores expuestos de hasta 20 m, presentan estratificación planar horizontal, granodecreciente y cruzada y, en parte, incluyen lentes de arena. Esta unidad cubre parcialmente la antigua morfología de las morrenas de la Glaciación Santa María y conforman planicies de desagüe glacial ("outwash"), asociados a la Glaciación Llanquihue del Pleistoceno Superior (Mercer, 1976).

Depósitos morrénicos (PIm2), descritos por Antinao *et al.* (2000) como depósitos no consolidados, till, sedimentos glaciofluviales y litorales con espesores variables desde decimetros a metros. Esta unidad forma cordones morrénicos discontinuos al oeste de las morrenas asignadas a la Glaciación Llanquihue, especialmente al norte del Río Maullín. Estos depósitos pueden asignarse a la Glaciación Santa María del Pleistoceno Medio (Porter, 1981).

Depósitos Glaciofluviales (Plgf2), descritos por Antinao *et al.* (2000), estos depósitos corresponden a gravas gruesas, con moderada a buena selección, con clastos redondeados a bien redondeados, con intercalaciones de arenas de grano medio y de color amarillo anaranjado. Cerca de Maullín, los depósitos de esta unidad son arenosos, presentan estratificación cruzada y están cortados por canales originados, probablemente durante la Glaciación Llanquihue. Se le asigna una edad Pleistoceno Medio asociado a la Glaciación Santa María, aunque no se descarta que puedan ser parte de depósitos glaciofluviales distales asociados con un avance temprano de la Glaciación Llanquihue, durante la etapa de isotopo de oxigeno marino 4 (MIS4), aproximadamente hace 71.000 años.

#### 2.3.4 Oligoceno-Plioceno

Formación Caleta Godoy (Plicg), descrita por (Ayala, 1982), corresponde a rocas estratificadas, secuencias de conglomerados, tobas arenosas y areniscas, de origen continental-parálica-marina. En el sector norte del morro Amortajado, afloran areniscas ricas en fauna marina fósil, relativamente bien conservada (bivalvos, gastrópodos y escafópodos). Las rocas presentan una compleja asociación de facies continentales que contienen delgados mantos de carbón, facies marinas con fauna fósil y facies parálicas, que sugieren un sistema depositacional de tipo fluvio-estuarino progradante.

# **III METODOLOGÍAS**

## 3.1 Caracterización y descripciones estratigráficas

En terreno para reconocer la estratigrafía bajo el subsuelo se han utilizado palas para la excavación de fosas, además de perforaciones con barrenos. Estos últimos se han utilizado en transectos perpendiculares a la línea de costa, y sobre el cordón litoral formado en los últimos años (Figura 12). Paralelamente se ha realizado un levantamiento topográfico a través de un nivel, mira y trípode. Con esto se han realizado esquemas estratigráficos referenciado al nivel medio del mar local.



Figura 12. Sitio Lagunas con los puntos de perforaciones con barrenos y excavaciones de fosas para el reconocimiento de la estratigrafía en subsuperficie, a lo largo del perfil de GPR P72 (ver más adelante en capítulo GPR).

El "logeo" del testigo consistió en la descripción del espesor de la capa, la granulometría, color y características generales junto al reconocimiento de materia orgánica, además de estructuras y tipos de contacto entre cada capa (Figura 13). La profundidad de cada perforación dependió del nivel de saturación de la capa freática, la cual se encontraba en promedio a 2-3 m de profundidad.



Figura 13. Testigo desde un barreno utilizado para la descripción del subsuelo. B) Excavación realizada con palas, observándose el suelo superficial y depósitos de arena con una profundidad aproximada de 1 m.

Por otra parte, se realizó un muestreo de sedimentos superficiales en los ambientes sedimentarios recientes (Figura 14), caracterizando en forma general el tipo de depósito sedimentario y, posteriormente, comparando con sedimentos descritos en la estratigrafía de un cordón litoral en subsuperficie (Tabla 1). En laboratorio se procedió a realizar un análisis granulométrico y descripciones a lupa binocular.



Figura 14. Ubicación de las muestras de sedimentos para una caracterización y descripción general de los distintos ambientes sedimentarios actuales.

| Código<br>muestra | Coordenada<br>Norte (m) | Coordenada<br>Este (m) | Peso<br>muestra<br>húmeda (g) | Ambiente depositacional - profundidad  |
|-------------------|-------------------------|------------------------|-------------------------------|----------------------------------------|
| M001              | 5.389.131               | 610.887                | 321                           | Intermareal superior - superficial     |
| M001B             | 5.389.110               | 610.855                | 299                           | Intermareal inferior - superficial     |
| M002              | 5.388.711               | 611.379                | 365                           | Llanura de marea - superficial         |
| M003              | 5.388.858               | 611.744                | 365                           | Llanura de marea - superficial         |
| M004              | 5.388.858               | 611.744                | 346                           | Llanura de marea - 10 cm               |
| M005              | 5.388.949               | 611.884                | 284                           | Llanura de marea - 10 cm               |
| M008              | 5.391.886               | 612.341                | 342                           | Dunas - superficial                    |
| M009              | 5.391.908               | 612.245                | 262                           | Dunas - superficial                    |
| M010              | 5.391.686               | 612.250                | 251                           | Dunas - superficial                    |
| M011              | 5.391.690               | 612.317                | 266                           | Subsuelo cordón litoral A - 12 a 32 cm |
| M012              | 5.391.690               | 612.317                | 247                           | Subsuelo cordón litoral A - 32 a 40 cm |
| M013              | 5.391.690               | 612.317                | 284                           | Subsuelo cordón litoral A - 45 a 53 cm |
| M014              | 5.391.690               | 612.317                | 300                           | Subsuelo cordón litoral A - >53 cm     |
| M015              | 5.391.393               | 611.674                | 330                           | Intermareal inferior - superficial     |
| M016              | 5.391.451               | 611.694                | 382                           | Intermareal superior - superficial     |
| M017              | 5.391.384               | 611.898                | 320                           | Dunas                                  |
| M018              | 5.391.414               | 611.839                | 354                           | Intermareal superior - superficial     |
| M019              | 5.391.340               | 611.795                | 302                           | Intermareal superior - superficial     |
| M020              | 5.391.306               | 611.851                | 292                           | Dunas                                  |

Tabla 1. Muestras de sedimentos de la planicie de cordones litorales de Pangal.

#### 3.1.1 Granulometría de sedimentos

Los sedimentos muestreados se procesaron en el laboratorio de Bentos de la Escuela Ciencias del Mar, Pontificia Universidad Católica de Valparaíso (PUCV), y en el laboratorio de Sedimentología de la Universidad Andrés Bello (UNAB), Viña del Mar. Se pesaron las muestras húmedas con una balanza analítica marca RADWAG modelo AS220-C2, y se dejaron secar las muestras durante 24 horas a 60°C, en una estufa de secado marca TEMPRA modelo ZRD-5055 (Figura 15), posteriormente se volvió a pesar, se homogenizó y dividió cada muestra para duplicar los datos.


Figura 15. Pesaje, secado, homogenización y división de muestras en el laboratorio de Bentos (PUCV).

Se realizo el tamizaje de las muestras cada ¼ de Ø (phi) entre los tamaños 1 a 4 Ø (Figura 16), con tamices estructura y malla GILSON de 8 pulgadas (N° 35, 40, 45, 50, 60, 70, 80, 100, 120, 140, 170, 200 y 230), ya que corresponden mayoritariamente a un tamaño entre arena media a fina. Se peso aproximadamente 50 gramos de cada muestra y fueron agitadas durante 10 minutos en un remecedor de tamices mecánico de movimiento circular marca W.S TYLER modelo RO-TAP (Figura 17). Luego, se pesó cada fracción separada en una balanza semi-micro analítica marco BOECO modelo BXX 31.



Figura 16. Tamizado de las muestras en el Laboratorio de Sedimentología UNAB.



Figura 17. Agitador de tamices modelo RO-TAP, con 6 tamices desde N° 35 a N° 80 (la otra columna por separado desde N°80 a N°230).

A través del software GRADISTAT v.8 se obtuvieron los parámetros de media, la que indica la clasificación dentro de una escala de tamaños y señala la energía cinética promedio del ambiente, la selección, que muestra el ancho del rango de tamaños y refleja las oscilaciones de la energía cinética, la asimetría, la cual analiza la posición de la media respecto a la mediana, y la agudeza, que analiza la forma achatada o puntiaguda de la curva respecto a una curva normal. Utilizándose los valores obtenidos por el método gráfico de Folk & Ward (1957), se compararon con un análisis de correlación de Pearson para determinar el grado de semejanza y discriminar los distintos tipos de ambientes. El método gráfico es necesario para la obtención de los parámetros granulométricos y la interpretación de ambientes sedimentarios a partir de estos, debido a que la asimetría es una variable fundamental y mejor representada que el método de momento (Alcántara-Carrió et al., 2001).

### 3.2 Sistema de Posicionamiento Global Diferencial (DGPS)

Mediante un sistema de posicionamiento global diferencial con un equipo Trimble R4 GNSS se realizaron perfiles topográficos continuos, junto a la obtención de puntos específicos en la planicie de Pangal, reconstruyéndose perfiles de la superficie terrestre con una alta calidad en la precisión de los datos de posicionamiento y altura (coordenadas x, y, z). Se han creado dos transectos de aproximadamente 4 y 6 km desde océano a tierra adentro, en el área norte y sur en una campaña de terreno del año 2015, mientras que una campaña en septiembre del presente año, se han creado transectos en la zona central de la playa actual (Figura 18). Todos estos datos referenciados al nivel medio del mar local, dato obtenido mediante el uso de un mareógrafo acústico en terreno (mayor detalle en el siguiente subcapítulo).



Figura 18. Perfiles topográficos realizados con DGPS en toda la extensión de la planicie costera y en la actual playa de Pangal.

Además, en una campaña de terreno realizada en enero del presente año, se ha instalado una estación base en un punto ya conocido denominado informalmente "Capitania", ubicado en las cercanías del pueblo de Maullín (Figura 19). El punto fue trasladado al interior de la planicie de Pangal, para facilitar las labores de trabajo durante el día. De esta forma, se crearon nuevos puntos de estaciones base, destacando la estación informal "Dadi" y "Enoc" (Tabla 2).

| Estación base | Coordenada Norte (m) | Coordenada Este (m) | Altura (m.s.n.m.) |
|---------------|----------------------|---------------------|-------------------|
| Capitania     | 5.391.939,668        | 617.018,018         | 2.733             |
| Enoc          | 5.391.180,476        | 615.583,470         | 3.919             |
| Dadi          | 5.386.333,552        | 611.280,031         | 3.252             |

Tabla 2. Datos de estaciones GPS, utilizadas para el procesamiento y corrección de los perfiles continuos y puntos estáticos.

La instalación en terreno de la estación base y móvil, se realizó según los pasos de la "Guía de Protocolo Instalación GPS" del laboratorio de Geología de Tsunamis (LGT), de la Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso (ECM, PUCV). El procesamiento de los datos fue realizado mediante el software Trimble Business Center v.2.97, siguiendo la Guía de "Protocolo Procesamiento de datos en Trimble Business Center" del laboratorio de Geología de Tsunamis ECM, PUCV.



Figura 19. Estaciones dGPS a) Estación Capitania b) Estación Enoc c) Estación Dadi.

### 3.2.1 Nivel medio del mar local

En la localidad de Maullín no existe un mareógrafo permanente para poder determinar el nivel medio del mar. Por tal motivo, el año 2015 se instaló en una estructura de metal con base de hormigón un mareógrafo acústico creado por Rob Wesson (Mark II®) frente al punto base Capitania en el pueblo de Maullín. Durante siete días se registró las variaciones de la marea, datos que fueron comparados posteriormente con el Modelo 8 Atlas TPXO (Figura 20). Obteniéndose el nivel medio del mar local para la estación base Capitania, valor que corresponde a 2.733 m.s.n.m.



Figura 20. Comparación del registro de marea en Maullín durante septiembre del año 2015, ajustado al Modelo 8 Atlas TPXO.

### 3.3 Sistema de información y teledetección (SIG)

Mediante el procesamiento y análisis de datos en un sistema de información y teledetección utilizando el programa ArcGIS, se dará cumplimiento a dos de los objetivos específicos que son detectar las series de cordones litorales identificando cambios topográficos en la planicie de Pangal. Además de establecer las distribuciones espacio-temporales de los relieves terrestres generados posterior al terremoto de 1960 en la línea de costa, delimitando las

superficies terrestres creadas hasta la actualidad, con imágenes satelitales y fotografías aéreas disponibles.

### 3.3.1 Fotografías aéreas e imágenes satelitales

Cinco fotografías aéreas del frente de la playa de Pangal (aproximadamente 41° 37' 18.16"S y 73° 39' 23.14"W) fueron analizadas mediante la digitalización, georreferenciación y rectificación. Una de las fotografías fue obtenida del vuelo Trimetrogon en 1944, resguardado por el Instituto Geográfico Militar del Ejército de Chile (IGM). Otra obtenida en un vuelo con la ayuda técnica de la Organización de Estados Americanos (OEA) en 1961, también resguardada en el IGM (Figura 21). Además de otras tres de 1979, 1980 y 1994 obtenidas por el Servicio Aereofotogramétrico (SAF), de la Fuerza Aérea de Chile. La digitalización de todas las fotografías ha sido realizada con una resolución de 1.200 DPI, para obtener una representatividad de pixel óptima en el posterior trazado de líneas de costa. Siguiendo la metodología de Araujo *et al.* (2009) las fotografías aéreas fueron georreferenciadas y rectificadas con una imagen satelital base del programa ArcGIS, existiendo variaciones en parámetros que se detallan más adelante.



Figura 21. A) Fotografía aérea tomada en el vuelo Trimetrogon desde el oeste a la planicie de Pangal en el año 1944. B) Fotografía aérea tomada en el vuelo OEA perpendicularmente a la planicie de Pangal en el año 1961.

Las fotografías fueron georreferenciadas y rectificadas con más de 20 puntos de control, los cuales fueron ubicados dentro de la planicie uniformemente, aplicándose un ajuste automático y una transformación polinomial de tercer orden. La fotografía aérea del año 1944 fue tomada en ángulo desde un vuelo al oeste de la planicie, por lo cual se obtuvo un error de 28.5 m, mientras que las demás fotografías aéreas fueron tomadas perpendicular a la planicie con una mayor precisión, obteniéndose un error menor a 1 m. Por otro lado, desde Google Earth Pro se ha podido acceder a imágenes satelitales de los años 2005, 2011, 2012, 2014 y 2016, con una alta resolución ofrecidas por las compañías CNES/Airbus y DigitalGlobe (Figura 22). De acuerdo a la metodología de Araujo *et al.* (2009), se han guardado las imágenes satelitales a una resolución máxima de 4.800x2.718px, y con la herramienta de medición (regla) en Google Earth Pro, se ha medido la misma cantidad de pixeles en metros tanto para la escala vertical, como la horizontal (obteniendo una representatividad de 1 m para cada pixel).



Figura 22. Imágenes satelitales de Google Earth año 2016 y 2011 con una alta resolución, obtenidas desde empresas como DigitalGlobe y CNES/Airbus.

Se resume el error total calculado mediante la suma cuadrática media (RMS) de todos los errores residuales (Tabla 3). Este valor describe el grado de coherencia de la transformación entre los distintos puntos de control.

| Año Fotografía | Identificador        | Código Identificación N° Puntos control |                  | Total RMS Error |
|----------------|----------------------|-----------------------------------------|------------------|-----------------|
| aérea          | Vuelo/Fuente         | Propio                                  | N Tuntos control | (m)             |
| 1944           | Trimetrogon<br>(IGM) | 552 R13                                 | 26               | 28,5068         |
| 1961           | OEA (IGM)            | 503-334                                 | 21               | 0,9289          |
| 1979           | SAF                  | CH3024-14064                            | 24               | 0,8073          |
| 1980           | SAF                  | CH30S24-18900 29                        |                  | 0,8444          |
| 1004           | SAF                  | S22-L12-13959                           | 27               | 0,9901          |
| 1994           |                      | S22-L12-13960                           | 29               | 0,7091          |
| 2005           | Google Earth         | 12_25_2005_P01                          | 20               | 0,8748          |
| 2005           |                      | 12_25_2005_P02                          | 20               | 0,9677          |
| 2011           | Google Earth         | 12_28_2011_P01                          | 24               | 0,8518          |
| 2011           |                      | 12_28_2011_P02                          | 24               | 0,8844          |
| 2012           | Google Earth         | 01_04_2012_P01                          | 21               | 0,9287          |
| 2012           |                      | 01_04_2012_P02                          | 20               | 0,8857          |
| 2014           | Coogle Forth         | 01_15_2014_P01                          | 27               | 0,9091          |
| 2014           | Google Earth         | 01_15_2014_P02                          | 25               | 0,7859          |
| 2016           | 16 Google Earth      | 01_29_2016_P01                          | 20               | 0,9755          |
| 2010           |                      | 01_29_2016_P02                          | 20               | 0,9186          |
| 2016           | Google Earth         | 10_18_2016_P01                          | 21               | 0,8230          |
| 2010           |                      | 10_18_2016_P02                          | 20               | 0,8779          |
| 2016           | Google Earth         | 11_20_2016_P01                          | 20               | 0,8484          |
| 2016           |                      | 11 20 2016 PO2                          | 21               | 0,8189          |

Tabla 3. Resumen de las fotografías aéreas e imágenes satelitales utilizadas. Se detalla la cantidad de puntos de control utilizados para la georreferenciación y el error RMS.

En cada una de estas fotografías aéreas e imágenes satelitales se realizó una interpretación visual de la línea de costa, obteniendo finalmente los datos para un posterior análisis (Figura 23). Creando un archivo de polilínea en formato "shape" para cada año, en un sistema de coordenadas WGS 1984 (UTM zona 18S). Se procedió a delinear manualmente la línea de costa utilizando la vegetación como parámetro de referencia para el cambio entre tierra y océano (Thieler *et al.*, 2009), debido a que en la playa de Pangal la variación horizontal de la marea baja y alta es de decenas a centenas de metros (la playa tiene un perfil topográfico de baja pendiente).



Figura 23. Etapas del proceso de obtención, georreferenciación, rectificación, interpretación y delineación de las líneas de costa.

### 3.3.2 Modelo de elevación digital

Para la obtención de perfiles topográfico se utilizaron dos modelos de elevación digital con distintas resoluciones espaciales (Figura 24). A partir de datos de elevación del año 2016 entregados por el Servicio Hidrográfico y Oceanográfico de la Armada de Chile (SHOA) en formato "xls", se ha creado una Red de Triángulos Irregulares (TIN). Posteriormente se ha convertido el TIN a un Modelo de Elevación Digital (DEM), con un Datum WGS84 y una resolución espacial de 37 m. Además, se ha utilizado un DEM proporcionado por un vuelo de dron con una resolución espacial de 50 cm, obtenido en terreno y facilitado por el LGT, PUCV.

A estos modelos de elevación digital se ha aplicado una corrección respecto a puntos medidos con DGPS y referenciados al nivel medio del mar local. Para poder corregir, se han calculado diferencias entre los valores de elevación de cada DEM y valores de terreno referenciados al nivel del mar. Esta diferencia es utilizada para corregir los DEM con un error cuantificable (Tabla 4).

Tabla 4. Promedio de las diferencias entre los valores de los modelos de elevación digital Dron y SHOA, con respecto a puntos medidos de DGPS.

| Promedio datos elevación DRON | 13,1642 (m) |
|-------------------------------|-------------|
| Promedio datos elevación SHOA | -1,4604 (m) |
| Error datos DRON              | -0,1396 (m) |
| Error datos SHOA              | -3,4364 (m) |



Figura 24. Modelos de elevación digital. a) Obtenido desde datos de elevación 2016 del SHOA. b) Obtenido desde datos de elevación 2015 de un dron en terreno.

### 3.3.3 Sistema digital de análisis de línea de costa

Con las líneas de costa obtenidas desde fotografías aéreas e imágenes satelitales (Tabla 5), se ha utilizado el Add-In gratuito para ArcGIS ofrecido por la USGS, denominado "Digital Shoreline Analysis System", el cual cuantifica tasas de cambio en la línea de costa (Thieler *et al.*, 2009). Se ha utilizado la guía oficial del software, creándose una línea base en el frente de playa de Pangal, con una longitud aproximada de 4 km, paralelo a las líneas de costa y hacia el océano (*offshore*) a aproximadamente 250 m de la última línea del año 2016. Desde la línea base se han creado transectos cada 50 m de distancia entre ellos, con una longitud de 800 m, y de forma perpendicular a las líneas de costa (Figura 25). Por último, se ha procedido a calcular las estadísticas ofrecidas por el software, siendo las de mayor relevancia para este estudio: el *net shoreline movement* (NSM) y el *end point rate* (EPR). El EPR divide la distancia del movimiento de la línea de costa por el tiempo entre la más antigua y la más actual, mientras que el NSM mide la distancia entre la línea de costa más antigua y la más actual para cada transecta.



Figura 25. Análisis de cambio de las líneas de costa desde el año 1944-2016. Todas las líneas de costa fueron interceptadas por un conjunto de transecto perpendiculares a la línea base, usando el Sistema de Análisis Digital de Línea de Costa (DSAS) desarrollado por la USGS. Imagen satelital de fondo correspondiente al 11/20/2016.

El cálculo de las estadísticas ha sido creado en periodos de años continuos. Permitiendo la separación posterior de dos periodos con signos inversos (negativo y positivo), para los años 1944-1980 y 1980-2016. Además, para una comparación con mayor precisión se ha analizado en detalle las diferencias entre los años 1944 y 1961 con la línea de costa más reciente.

| Fecha de línea de costa | Longitud (m) |
|-------------------------|--------------|
| 7/1/1944                | 8.023,44     |
| 1/24/1961               | 8.187,13     |
| 7/1/1979                | 7.004,07     |
| 7/1/1980                | 8.262,18     |
| 7/1/1994                | 5.961,21     |
| 12/25/2005              | 4.105,65     |
| 12/28/2011              | 7.155,54     |
| 1/4/2012                | 7.275,18     |
| 1/15/2014               | 7.238,11     |
| 1/29/2016               | 7.633,63     |
| 10/18/2016              | 7.586,79     |
| 11/20/2016              | 7.022,23     |

Tabla 5. Fecha y longitud de las líneas de costa delineadas.

### 3.3.4 Herramienta Topographic Swath o Swath Profile

Otra herramienta Add-In utilizada es la denominada "SwathProfiler", la cual extrae un franja topográfica, los que concentran datos de elevación en un solo perfil, desde un archivo DEM (Pérez-Peña *et al.*, 2017). Se ha comparado los datos corregidos del DEM Shoa con dos perfiles (Norte y Sur) realizados en una campaña previa con el DGPS. Estas franjas se han utilizado en distintas zonas de la planicie de Pangal para caracterizar las morfologías de los cordones litorales.

# 3.4 Radar de penetración terrestre (GPR)

Se ha utilizado un equipo MALA con una antena de 250 MHz, la cual se ha calibrado en un afloramiento del sitio Dadi (Figura 26). Para su calibración en terreno, se ha puesto a 1 m de profundidad desde la superficie, materiales de acero, con la finalidad de calcular la velocidad promedio de las ondas electromagnéticas a través del material considerado homogéneo (sin grandes cambios de propiedades dieléctricas). Como resultado, se ha obtenido una velocidad promedio de 70 m/µS y una profundidad ~3 m de la señal del georadar. Por medio de la estratigrafía reconocida en terreno se interpretó el radargrama para extrapolar esta información y técnica hacia los radargramas obtenido en el frente de playa.



Figura 26. Ubicación del sitio Dadi con el transecto del GPR para la calibración del equipo. Afloramiento de depósitos arenosos y capa superficial de suelo, donde se ha calibrado el GPR (P94) con una referencia de materiales de acero enterrados a 1 m de profundidad desde la superficie, en sector Dadi.

El GPR ha sido utilizado en conjunto al sistema de posicionamiento global diferencial para obtener una correcta corrección topográfica. Los datos de coordenadas geográficas son almacenados simultáneamente con los datos del radargrama, como un archivo ".rd3" y ".cor" respectivamente. Para procesar los datos y obtener una imagen del radargrama corregida, utilizamos el software Radexplorer. Este programa tiene la herramienta de aplicar una autoganancia, y posee filtros necesarios para una correcta visualización de las señales electromagnéticas, como el filtro *background* y, *bandpass*. Además las señales de radar fueron migradas para corregir los efectos por la geometría de las estructuras del subsuelo.

Para la corrección topográfica se utilizó el formato .cor con una nueva configuración de datos en celdas de trazos y elevación. El cambio de formato de las coordenadas geográficas se ha realizado por medio de una rutina en el software Matlab creada por Matias Carvajal para el laboratorio de Geología de Tsunamis ECM, PUCV. Esta rutina permite la conversión desde las coordenadas geográficas a números de trazos realizados por el GPR junto a la elevación del punto, datos que se sincronizan respecto a la misma hora cuando se tomaron ambos datos. Se ha seguido una rutina para la transformación de formatos previo al ingreso en Matlab, disponible en Guía Protocolo de datos GPS-GPR para Matlab laboratorio de Geología de Tsunamis ECM, PUCV.

Los principales perfiles de radar de penetración terrestre para este estudio fueron realizados en una campaña de enero del año 2017 (Figura 27). En estos perfiles de GPR del sector Lagunas, al no existir una topografía tomada simultáneamente con DGPS, se ha procedido a usar la topografía ofrecida por SHOA. Mediante un SIG se han trazado las líneas de los perfiles de GPR, y se han creado puntos espaciados a una misma distancia para obtener la cantidad de trazos necesarios para la topografía a usar en el Software Radexplorer.



Figura 27. Sitio Lagunas con los perfiles de GPR (P69, P70, P72 y P73) obtenidos en la campaña de terreno del año 2017.

# **IV RESULTADOS**

# 4.1 Cordones litorales en la planicie de Pangal

La planicie de Pangal está formada por una serie de cordones litorales con distintas alturas y una distribución discontinua paralelos a la línea de costa (Figura 28). A lo largo de 5 km desde el océano hacia el interior de la planicie, se distinguen tres conjuntos de cordones litorales separados por dos bajos de aproximadamente 800 m de largo. Cabe destacar, la serie más reciente (hacia la actual línea de costa) representada por tres cordones litorales que serán descritos en los siguientes subcapítulos. En promedio, se han calculado en la planicie arenosa más de 26 cordones litorales, discontinuos desde norte a sur. Dos franjas topográficas realizadas una en el área norte con 7.000 m de longitud, y otra en el sur con 5.000 m de longitud, muestran las crestas de mayor altura a las adyacentes, con las máximas alturas a aproximadamente 7 m.s.n.m.



Figura 28. Localización de los perfiles topográficos realizados en la planicie de cordones litorales de Pangal.

En el área norte los cordones litorales tienen una marcada tendencia de ascenso y descenso, los dos bajos con una extensión promedio de aproximadamente 1.000 m. Desde océano a continente tienen una elevación de 4 y 3 m.s.n.m., existiendo entre ellos una diferencia de 1 m (Figura 29).



Figura 29. Franja topográfica en el área norte de la planicie de Pangal.

En el área sur los bajos son menos reconocibles ya que los cordones litorales predominan con una mayor extensión. Los dos bajos tienen una elevación de 3 y 2,2 m.s.n.m., con una diferencia de 0,8 m (Figura 30).



Figura 30. Franja topográfica en el área sur de la planicie de Pangal.

Los datos corregidos del DEM obtenido desde el SHOA se asemejan a dos perfiles (Norte y Sur) realizados en una campaña de terreno previa con el DGPS. Se observó una similitud en los datos de elevación, pero respecto al nivel medio del mar difieren en aproximadamente 1 m producto de las distintas referenciaciones entre el DEM y el DGPS, sin embargo, esto permite un óptimo análisis de morfologías.

# 4.1.1 Cambios horizontales de la línea de costa desde 1944 hasta el 2016

La línea de costa de la planicie de Pangal en las últimas décadas ha tenido diversos cambios, observándose un período de retroceso de la línea de costa hacia el continente y otro de avance hacia el océano (Figura 31, 32 y 33). Desde el software DSAS se han obtenido datos entre el año 1944 hasta el año 1980 que demuestran un retroceso de la línea de costa con una tasa de cambio promedio de 9,19 m/año. Para luego, hasta el año 2016 recuperarse a una tasa de cambio promedio promedio de 8,29 m/año.



Figura 31. Evolución de la línea de costa desde el año 1944 hasta el 2016, con dos tendencias lineales marcando dos periodos de avance y retroceso.



Figura 32. Líneas de costa delimitadas entre los años 1944-1980, fotografía aérea del año 1980 de fondo. Se observa un retroceso continuo con un máximo en el año 1980.



Figura 33. Líneas de costa delimitadas entre los años 1980-2016, imagen satelital del año 2016 de fondo. Se observa una recuperación continua hasta la actualidad.

Para periodos generales y específicos se determina el cambio y tasa de cambio promedio entre cada línea de costa (Tabla 6). El periodo de retroceso ocurre durante los años 1944-1980 con un total promedio de 330,83 m. Mientras que la recuperación de la línea de costa ocurre durante los años 1980-2016 con un total promedio de 301,68 m, sin aún volver en la actualidad al estado previo, es decir, al del año 1944.

| Periodo                 | Cambio promedio de<br>línea de costa (m) | Tasa de cambio promedio<br>de línea de costa (m/año) | Transectas<br>usadas |
|-------------------------|------------------------------------------|------------------------------------------------------|----------------------|
| 07/01/1944 - 01/24/1961 | -172,2318                                | -10,3972                                             | 1 - 82               |
| 01/24/1961 - 07/01/1979 | -131,7413                                | -7,1474                                              | 1 - 82               |
| 07/01/1979 - 07/01/1980 | -27,9605                                 | -27,8835                                             | 1 - 82               |
| 07/01/1980 - 07/01/1994 | 149,5796                                 | 10,6867                                              | 1 - 82               |
| 07/01/1994 - 12/25/2005 | 60,4770                                  | 5,2667                                               | 1 - 64               |
| 12/25/2005 - 12/28/2011 | 74,0852                                  | 12,3303                                              | 1 - 64               |
| 12/28/2011 - 01/04/2012 | 4,4083                                   | 2,2232                                               | 1 - 82               |
| 01/04/2012 - 01/15/2014 | 8,5718                                   | 4,2223                                               | 1 - 82               |
| 01/15/2014 - 01/29/2016 | 18,0250                                  | 8,8434                                               | 1 - 82               |
| 01/29/2016 - 10/18/2016 | -0,4959                                  | -0,6884                                              | 1 - 82               |
| 10/18/2016 - 11/20/2016 | -0,2057                                  | -2,2776                                              | 1 - 82               |
|                         |                                          |                                                      |                      |

Tabla 6. Resultados del análisis de cambio en la línea de costa utilizando el DSAS.

Para los periodos específicos, desde el año 1944 hasta el año 1961 (meses después del terremoto gigante de 1960) la línea de costa tuvo un retroceso promedio de 172,23 m, con una tasa de cambio promedio de 10,39 m/año, suponiendo que durante estos casi 17 años esta tasa fue constante. Sin embargo, con un evento de subsidencia, en el cual la planicie se hundió 1,5 m esperaríamos que la tasa de cambio en 1960 haya sido más alta que los años previos. Evidencias en terreno demuestran erosión de la playa, donde la perdida de sedimento dejo expuesto en superficie raíces de árboles, que además fueron

afectados por la subsidencia quedando expuestos al oleaje (Figura 34). Otros importantes cambios son entre los años 1980 a 1994, donde la costa prograda a una tasa de cambio promedio de 10,69 m/año y avanza en promedio 149,58 m. Además, entre los años 2005 a 2011 continua progradando a una tasa promedio de 12,33 m/año, avanzando una longitud de 74,09 m. En terreno el avance y construcción de nuevos cordones litorales es evidenciado y marcado por una señalización marítima antigua dejada y abandonada aproximadamente 200 m tierra adentro de la actual línea de costa, en un valle de aproximadamente 2 m.s.n.m. y no visible desde océano debido a la altura de los cordones litorales (altura de aproximadamente 7 m.s.n.m.).



Figura 34. Detalle de evidencias de erosión y progradación en la costa de la planicie. a) Fotografía actual tomada en este trabajo donde se observa señalización marítima, dejada tierra adentro por la progradación. b) Fotografía tomada por George Plafker el año 1968, en la parte norte de la planicie de Pangal, raíces de árboles muertos por la subsidencia cosismica han quedado expuestos producto de erosión.

### 4.1.2 Cordones litorales formados posterior al año 1980

A través de los sistemas de información y teledetección, se distinguen la formación de tres cordones litorales en el frente de la planicie posterior al

terremoto de 1960 (Figura 35). Estos cordones litorales comenzaron a formarse cuando la costa comenzó a progradar y recuperarse a partir del año 1980.



Figura 35. Mapa identificando los cordones litorales formados y preservados posterior al año 1980.

En una evolución temporal de la topografía en un mismo perfil, datos obtenidos en terreno en el año 1987 (Atwater *et al.*, 2013), datos del SHOA obtenido en el año 2016, y un perfil con menor extensión realizado en una campaña de

septiembre de este año, se visualiza la construcción de los cordones litorales actuales y el avance de la costa hacia el océano (Figura 36).



Figura 36. Contexto de la planicie de cordones litorales de Pangal, se observa una imagen satelital del año

2016 y perfiles topográficos realizados en el año 1989 (color azul), 2016 (color negro) y 2018 (color rojo). Los datos se encuentran referenciados al nivel del mar local, mientras que los datos de 1989 a la marea más alta medida en el verano austral de ese año.

Comparando las fotografías aéreas de 1944 y 1961, se observa un retroceso de la línea de costa que se extendió hasta mínimo el año 1980. El retroceso, causo la erosión de la superficie costera, además de sepultar la vegetación bajo las nuevas playas de arena formadas tierra adentro (considerando la formación de una berma y duna). Entre los años 1979 y 1980 la línea de costa retrocede en promedio 27,96 m, construyéndose y reforzándose la berma y duna activa.

La formación del primer cordón litoral (cordón litoral A), se inició en 1980, cuando la línea de costa alcanza su máximo retroceso y comienza a recuperarse, dejando abandonada (más tierra adentro) la berma y duna de su playa. El segundo cordón litoral (cordón litoral B), se construye posterior a 1994, dando lugar a la depositación de sedimento que genera una cresta de mayor altura a la anterior. Por último, aproximadamente en el 2005 la línea de costa continua progradando hasta la actualidad, generando una berma y duna activa, considerada para este trabajo como el cordón litoral más reciente (cordón litoral C).

### 4.1.3 Morfología de cordones litorales recientes

A lo largo de la planicie de Pangal la morfología de los cordones litorales es diversa, existiendo un patrón distinto para la parte norte, centro y sur (Figura 37). Estas morfologías se relacionan a la forma y distribución de la línea de costa, la cual es diferente en las tres zonas durante un mismo año. El promedio general de altura para los cordones litorales son 1,25 m.s.n.m. para el A, 1,36 m.s.n.m. para el B, y 2,55 m.s.n.m. para el C. Existiendo una diferencia en la altura de aproximadamente 1,3 m entre el más tierra adentro y el más hacia océano.



Figura 37. Mapa de ubicación de las líneas Swath Profile para las tres zonas. a) Detalles de la imagen principal. b) Detalle de la zona sur. c) Detalle de la zona centro. d) Detalle de la zona norte.

En el perfil norte se identifican los tres cordones litorales (Figura 38), donde el Cordón litoral A se caracteriza por tener en promedio una altura de 2,24 m y un ancho de 146,21 m. El Cordón litoral B tiene también en promedio una altura de 1 m, con un ancho promedio 72,97 m. Y por último el Cordón litoral C, en promedio posee una altura de 1,94 m y un ancho promedio de 226,16 m.



Figura 38. Franja topográfica de la zona norte con datos obtenidos desde el SHOA. En color negro se destaca el promedio de los datos para los tres cordones litorales A, B y C.

En el perfil de la zona central se identifican tres cordones litorales (Figura 39), donde el Cordón litoral A se caracteriza por tener en promedio una altura de 0,21 m y un ancho promedio de 73,12 m. El Cordón litoral B tiene también en promedio una altura de 1,86 m, con un ancho de 101,87 m. Y, por último, el Cordón litoral C posee en promedio una altura de 4,38 m y un ancho promedio 323,97 m.



Figura 39. Franja topográfica de la zona centro con datos obtenidos desde el SHOA. En color negro se destaca el promedio de los datos para los dos cordones litorales.

En el perfil sur se identifican dos cordones litorales de gran tamaño y uno actual de menor proporción (Figura 40). El cordón litoral A tiene en promedio una altura de 1,31 m y un ancho de 200,52 m. Por otra parte, el cordón litoral B en promedio posee una altura de 1,23 m y un ancho de 152 m. Además del Cordón litoral C, en promedio tiene una altura de 1,32 m y un ancho de 222,18 m.



Figura 40. Franja topográfica de la zona sur con datos obtenidos desde el SHOA. En color negro se destaca el promedio de los datos para los dos cordones litorales.

### 4.2 Ambientes depositacionales recientes y granulometría

En el frente de la playa de Pangal se reconocen tres subambientes: el intermareal inferior, el intermareal superior, y el supramareal donde se identifica una berma y duna de trascosta (Figura 41). Los ambientes depositacionales aquí descritos, se caracterizan por los rasgos geomorfológicos, composición mineralógica del depósito, estructuras sedimentarias y parámetros granulométricos del sedimento.



Figura 41. Perfil de playa de Pangal indicándose los sub-ambientes que lo componen. a) Fotografía tomada desde el área sur hacia el área norte del frente de playa. b) Perfil topográfico realizado en el área central del frente de playa.

Por otra parte, se reconoce un ambiente de llanura de marea en la parte interior del norte y sur de la planicie de cordones litorales. Alejado de la acción del oleaje, la llanura de marea es principalmente un área protegida donde la acción de las mareas son el factor de modelación de formas predominante. Entre los cuatro ambientes y subambientes sedimentarios, existe una clara diferenciación de en el tamaño de granos, los cuales son indicativos de los niveles energéticos del medio de transporte. El tamaño de granos aumenta desde depósitos ubicados más hacia el océano y disminuye hacia el continente (Figura 42).



Figura 42. Granulometría de los sedimentos de los cuatro ambientes y subambientes en la planicie de Pangal.

### 4.2.1 Intermareal inferior

El subambiente intermareal inferior corresponde a la parte más hacia el océano de la playa, donde los depósitos de sedimentos están controlados principalmente por la energía del oleaje (Figura 43). Se observan ondulitas y laminación cruzada, además de una gran cantidad de humedad en el depósito. Esta zona tiene una pendiente de aproximadamente 1,6°, y se caracteriza por tener una extensión de 40 m horizontales desde océano a continente. Marcada por el nivel medio del mar y la marea baja.



Figura 43. Zona intermareal inferior donde se observa el nivel de la marea baja.

El sedimento depositado en este subambiente corresponde a arena media, bien seleccionada, con clastos de tamaño promedio a 0,28 mm. El grado de redondez es subredondeado a redondeado, con una alta esfericidad. Los minerales principales que se reconocen son mayoritariamente cuarzo, feldespatos, magnetita, fragmentos líticos y conchas calcáreas, en menor proporción epidota, anfíboles y piroxeno (Figura 44).



Figura 44. a) Muestra de sedimentos M016 de la zona intermareal inferior. b) Minerales de cuarzo. c) Minerales de magnetita. d) Minerales de feldespato. e) Fragmentos líticos. f) Fragmentos de conchas calcáreas.

## 4.2.2 Intermareal superior

En la zona intermareal superior se observan distintos restos de raíces y ramas de árboles junto a un depósito de arena fina, además de laminación cruzada y paralela (Figura 45). Al igual que el intermareal inferior, tiene una pendiente aproximada de 1,6°, y una extensión horizontal de 80 m desde océano a continente. Marcada por el nivel medio del mar y la marea alta.



Figura 45. Zona intermareal superior, se observan restos de raíces y ramas de árboles.

El sedimento depositado corresponde a arena fina, bien seleccionada, con clastos de tamaño promedio a 0,2 mm. El grado de redondez es subredondeado a redondeado. Se observan en mayor proporción clastos de cuarzo, feldespato, y fragmentos líticos, además de identificarse hematita/magnetita y anfíbol (Figura 46).



Figura 46. a) Muestra de sedimentos M019 de la zona intermareal superior. b) Minerales de cuarzo. c) Minerales de cuarzo, anfíbol y fragmentos líticos. d) Minerales de magnetita y hematita. e) Minerales de feldespato. f) Minerales de magnetita y hematita en gran proporción, además de cuarzo y feldespatos.

### 4.2.3 Dunas de trascosta

En la zona supramareal destaca una superficie más plana aproximadamente 0,6° correspondiente a la berma y en la parte más alta, se observan dunas de trascosta, donde la vegetación actúa como estabilizadora del sedimento traído por los vientos (Figura 47). Las dunas tienen alturas que van desde 4 a 7 m, y se extienden hasta más de 500 m hacia dentro de la planicie.



Figura 47. Zona de duna de trascosta, estabilizado por vegetación y donde el aporte de sedimento proviene del viento.

El sedimento depositado corresponde a arena fina, bien seleccionada, con clastos de tamaño promedio a 0,2 mm. El grado de redondez es de subredondeado a redondeado. Se reconocen mayoritariamente minerales de cuarzo, feldespato y magnetita, además de en menor cantidad anfíbol, epidota y fragmentos líticos (Figura 48).



Figura 48. a) Muestra de sedimentos M017 de la zona supramareal. b) Minerales de cuarzo. c) Minerales de magnetita. d) Minerales de feldespato.

### 4.2.4 Llanura de marea

La llanura de marea corresponde al área norte, sur e interiores de la planicie de cordones litorales, los cuales no tienen contacto directo con el océano. En esta zona las mareas son el principal factor de depositación y erosión (Figura 49). Caracterizados principalmente por canales de ríos de agua salobre.



Figura 49. Río del Rey durante un periodo de marea alta y otro de marea baja.

El sedimento depositado corresponde a arena fina, muy bien seleccionada, con clastos de tamaño promedio a 0,1 mm. El grado de redondez es de subderedondeado a subanguloso. Se reconocen mayoritariamente minerales de cuarzo, feldespato y fragmentos líticos, además de magnetita, micas y anfíboles (Figura 50).



Figura 50. a) Muestra de sedimentos M005 de la zona de llanura de marea. b) Minerales de anfíbol. c) Minerales de cuarzo. d) Minerales de feldespato. e) Minerales de magnetita.

### 2.5 Análisis bivariado de sedimentos

Las variables calculadas (media, selección, asimetría y agudeza) se distribuyen en valores cercanos, observándose una mayor dispersión en los valores de la media (Figura 51). Entre ellas existen correlaciones de Pearson significativas (Tabla 7). Algunas relaciones son negativas, indicando proporcionalidad inversa entre las variables, es decir, mientras una variable aumenta la otra lo hace disminuyendo. Por el contrario, las relaciones positivas, indican una proporcionalidad directa, al aumentar una variable la otra también lo hace. Estas variables correlacionadas tienen un valor p<0,05 lo cual es un valor significativo, lo que implica que tienen una tendencia lineal.



Figura 51. Distribución de los valores de asimetría (color azul), selección (color rojo), agudeza (color verde), y media (color negro) para todas las muestras de sedimentos.

Tabla 7. Correlaciones de Pearson entre las variables: media, selección, asimetría y agudeza. Valores de p<0.05 son correlaciones significativas.

|           | MEDIA  | SELECCIÓN | ASIMETRÍA |
|-----------|--------|-----------|-----------|
| SELECCIÓN | -0,670 |           |           |
|           | 0,000  |           |           |
| ASIMETRÍA | -0,625 | 0,644     |           |
|           | 0,000  | 0,000     |           |
| AGUDEZA   | 0,696  | -0,667    | -0,380    |
|           | 0,000  | 0,000     | 0,015     |

Contenido de la celda Correlación de Pearson Valor p

Al comparar las variables y graficarlas se observan conjuntos bien definidos entre cada ambiente y sub-ambiente (Figuras 52, 53, 54, 55, 56 y 57). Es posible distinguir datos separados desde la zona intermareal inferior, intermareal protegido y llanura de marea. En cambio, se hace complejo discriminar con exactitud los datos entre la zona intermareal superior y supramareal, debido a que algunos datos se traslapan. La mejor diferenciación entre todos los datos se observa entre la media versus la selección, y en la media versus la asimetría.

Al aumentar el tamaño medio de los clastos, es decir, volverse cada vez más fino, las variables de selección y asimetría disminuyen, esto implica que el depósito es mejor seleccionado y sesgado hacia lo fino, mientras que la agudeza aumenta, haciéndose la curva leptocúrtica (más apuntada hacia el centro). Por otra parte, cuando el depósito es mejor seleccionado (valor disminuye), la asimetría también disminuye, sesgándose hacia los sedimentos más finos, por el contrario, la agudeza aumenta haciéndose la curva más leptocúrtica. Y, por último, cuando la asimetría disminuye (los clastos son cada vez más finos), la agudeza aumenta.



Figura 52. Distribución de los datos de media versus selección para los distintos ambientes y subambientes.



Figura 53. Distribución de los datos de media versus asimetría para los distintos ambientes y subambientes.


Figura 54. Distribución de los datos de media versus agudeza para los distintos ambientes y subambientes.



Figura 55. Distribución de los datos de selección versus asimetría para los distintos ambientes y subambientes.



Figura 56. Distribución de los datos de selección versus agudeza para los distintos ambientes y subambientes.



Figura 57. Distribución de los datos de agudeza versus asimetría para los distintos ambientes y subambientes.

# 4.3 Descripción litológica del Cordón litoral A

En los primeros años del comienzo de la progradación (a partir del año 1980), se construye el primer cordón litoral (cordón litoral A). Acá se preserva un suelo orgánico pobremente desarrollado que cubre una capa de arena y el suelo del año 1960, el proceso de progradación continúa hasta el presente con la construcción de cordones litorales y una extensa playa de baja pendiente afectada por la acción de las mareas y el oleaje (Figura 58).



Figura 58. Morfoestratigrafía del primer cordón litoral formado posterior al terremoto de 1960. a) Ubicación de la planicie de cordones litorales de Pangal. b) Línea de perfil topográfico. c) Topografía realizada con dGPS. d) Fotografía del frente de playa de Pangal. e) Estratigrafía del cordón litoral A. f) Marea determinada a partir del modelo 8 Atlas TPXO. g y h) Detalle de la estratigrafía en subsuelo a partir de fosas realizadas a pala.

El cordón litoral A, desde superficie a profundidad está compuesto por una fina capa de suelo actual de 12 cm de espesor, seguido de una capa de arena de 38 cm. Subyaciendo la última capa se identifica un suelo poco desarrollado de 5 cm de espesor, mientras que debajo de este se describe una capa de arena de 8 cm de espesor. Subyaciendo a la capa de tsunami se encuentra el suelo de 1960 con 3 cm de espesor, y más abajo un depósito de arena (Figura 59).



Figura 59. Fosa realizada con pala de mano se observa la estratigrafía bajo el cordón litoral A, y las muestras de sedimento obtenidas.

La capa de arena más superficial de color marrón grisáceo tiene una parte superior no oxidada (M011) y otra inferior oxidada (M012), en una descripción general la muestra M011 corresponde a arena fina bien seleccionada, con clastos de tamaño promedio a 0,21 mm, e interpretada como un ambiente supramareal (Figura 60 y 62). La muestra M012 corresponde a arena fina bien seleccionada, con clastos de tamaño promedio a 0,19 mm, e interpretado como un ambiente supramareal (Figura 61 y 63). La capa de arena intermedia entre los dos suelos orgánicos está compuesta de arena fina moderadamente bien seleccionada, con clastos de tamaño promedio a 0,17 mm, subredondeados a angulosos, e interpretado como un depósito de tsunami (Figura 64 y 66). Se observa la presencia de minerales de cuarzo, fragmentos líticos y en menor cantidad feldespatos, además se identifican micas, anfíbol y epidota. Por último, la capa

de arena bajo el suelo de 1960 corresponde a arena fina bien seleccionada, con clastos de tamaño promedio a 0,14 mm, e interpretado como un ambiente intermareal superior a supramareal (Figura 65 y 67).



Figura 60. Distribución granulométrica de los distintos ambientes con la muestra M011, similar a un depósito de la zona intermareal superior.



Figura 61. Distribución granulométrica de los distintos ambientes con la muestra M012, similar a un depósito de la zona supramareal.



Figura 62. Gráficos de relación de parámetros granulométricos para la interpretación del ambiente depositacional de la muestra M011. Ambiente intermareal inferior (circulo celeste), intermareal superior (rombo azul), supramareal (triángulo amarillo), llanura de marea (cuadrado naranjo), intermareal protegido (cruces rojas) y valores de la muestra (asterisco negro).



Figura 63. Gráficos de relación de parámetros granulométricos para la interpretación del ambiente depositacional de la muestra M012. Ambiente intermareal inferior (circulo celeste), intermareal superior (rombo azul), supramareal (triángulo amarillo), llanura de marea (cuadrado naranjo), intermareal protegido (cruces rojas) y valores de la muestra (asterisco negro).



Figura 64. Distribución granulométrica de los distintos ambientes con la muestra M013, no se asemeja a ningún depósito de los ambientes actuales.



Figura 65. Distribución granulométrica de los distintos ambientes con la muestra M014, no se asemeja a ningún depósito de los ambientes actuales.



Figura 66. Gráficos de relación de parámetros granulométricos para la interpretación del ambiente depositacional de la muestra M013. Ambiente intermareal inferior (circulo celeste), intermareal superior (rombo azul), supramareal (triángulo amarillo), llanura de marea (cuadrado naranjo), intermareal protegido (cruces rojas) y valores de la muestra (asterisco negro).



Figura 67. Gráficos de relación de parámetros granulométricos para la interpretación del ambiente depositacional de la muestra M014. Ambiente intermareal inferior (circulo celeste), intermareal superior (rombo azul), supramareal (triángulo amarillo), llanura de marea (cuadrado naranjo), intermareal protegido (cruces rojas) y valores de la muestra (asterisco negro).

# 4.4 Estructuras sedimentarias internas

En el radargrama del sitio Dadi se reconoce y correlaciona la estratigrafía, desde las distintas informaciones litológicas obtenidas en terreno (Figura 68). Existe una continuidad en los reflectores que se relaciona con la continuidad de las capas sedimentarias. El suelo orgánico tiene un reflector continuo que no se diferencia a simple vista del depósito de arena, solo la correlación con información estratigráfica permite delinear la capa a través de todo el radargrama.



Figura 68. Interpretación de radargrama P94 por medio de testigos de sedimento.

El reflector más profundo, a aproximadamente 3 m, es interpretado como el nivel freático, corroborado en terreno con la aparición de agua en las perforaciones con barreno. Las capas de arena tienen facies de reflectores paralelos y cruzados y cubren la mayor parte del radargrama.

A través de un perfil realizado desde la línea de costa del año 2017 hacia el interior de la planicie en dirección este, se reconocen los tres cordones litorales principales creados posterior a 1980. Las principales estructuras internas son escarpes erosivos, marcando antiguas playas (Figura 69). Los reflectores de estos escarpes son líneas intensas, representadas por minerales pesados (alta concentración de magnetita/hematita). Además, se observan discordancias entre capas manteando hacia el océano y otras hacia el continente, representando el borde de la laguna reconocida en terreno.



Figura 69. Interpretación de radargrama P69 realizado a lo largo de los cordones litorales construidos posterior a 1980. Se identifican escarpes erosivos representando antiguas playas.

Se distinguen evidencias de erosión dejadas por el retroceso de la línea de costa, con capas depositadas posteriormente en el avance de la costa hacia el océano (Figura 70). En el NE las capas mantean hacia el continente, separadas por una discordancia angular con las capas suprayacentes. Hacia el lado SW se reconocen capas horizontales y un reflector más intenso en profundidad posiblemente marcando el nivel freático. El avance en la construcción de los cordones litorales queda demostrado por el mateo de las capas hacia el océano.



Figura 70. Interpretación de radargrama P72, identificando capas paralelas y discordantes, superficie erosiva y nivel freático a 3 m de profundidad.

La superficie de erosión marcada por un reflector más intenso, debido a los minerales pesados, se encuentra sobreyacida por capas que mantean hacia el océano en la parte W y hacia el continente en la parte E (Figura 71). Forman pequeños montículos y están cubiertos por capas continuas de reflectores paralelos. La capa más superficial tiene una continuidad desde W a E, con reflectores paralelos y cruzados de tamaños similares.



Figura 71. Interpretación de radargrama P70, identificándose reflectores más intensos marcados por minerales pesados y capas discordantes formando montículos sobre la superficie de erosión.

Dos fuertes reflectores son identificados en el radargrama P73 hacia la parte E, con capas de espesores aproximados de 20 cm (Figura 72). Se observa una discordancia entre capas manteado hacia el océano y otras horizontales. A una profundidad de 3 m se interpreta un reflector de gran intensidad asociado al nivel freático en el área.



Figura 72. Interpretación de radargrama P73, se identifica una capa superficial continua y capas intermedias truncadas, con un fuerte reflector en profundidad marcando el nivel freático.

# V DISCUSIÓN 5.1 Evolución temporal de la línea de costa

Si bien, no existe un registro en detalle de la morfología de playa previa al terremoto de 1960, contamos con una descripción optima de la evolución postevento. Una subsidencia de 1-2 m en la mayor parte de las zonas costeras a lo largo del área de ruptura (Atwater *et al.*, 1992) debe haber ocasionado la erosión y retroceso de varias líneas de costa (Figura 73). Además de la deformación y sus efectos en el continente, el tsunami asociado erosionó y destruyo varias zonas costeras (Plafker & Savage, 1970), dejando en su retiro un depósito de arena de gran extensión y reconocible en Maullín (Atwater *et al.*, 2013).



Figura 73. Modelo conceptual de la condición previa y efectos durante el terremoto en la planicie de cordones litorales de Pangal.

En la planicie costera de Pangal, el retroceso de la costa se prolongó hasta el año 1980, siendo un proceso relativamente lento de 20 años. Esto favoreció, el

desarrollo de un nuevo suelo orgánico después del depósito de arena dejado por el tsunami. Durante el retroceso de la línea de costa, se crearon superficies de erosión que borraron la topografía previa, y generaron un nuevo equilibrio de playa debido al previo hundimiento de toda la planicie. El máximo retroceso de la línea de costa hasta el año 1980, causo el corte y caída del suelo orgánico superficial en el frente de la playa, dejando una evidencia de erosión del último evento de tormenta ocurrido en la costa. Eventos de tormentas en las costas pueden causar erosión, incluyendo cambios en el transporte de sedimentos, y formación de barras de arena cercanas, afectando pequeñas áreas y profundidades someras (Monecke *et al.*, 2015).

Desde 1980 la planicie comenzó a progradar con una tendencia lineal, posiblemente asociado a una tendencia general de progradación evidenciado por la construcción hacia el océano de la planicie durante el holoceno (Figura 74). El suelo previamente erosionado, fue sepultado por un depósito de arena de la zona intermareal superior y supralitoral, construyéndose la primera topografía de gran altura, denominado como cordón litoral A. Esta construcción de nueva topografía, continúo originando un conjunto de nuevos cordones litorales, específicamente tres nuevos cordones litorales (dunas activas con una base de berma de playa). El espaciamiento un poco variable y el desarrollo casi continuo entre ellos, desde el año 1980 hasta el año 2016, son el resultado de un proceso de acreción costera predominante en toda la planicie de Pangal durante el Holoceno. La progradación dominante en el frente de la planicie se ha desarrollado durante los últimos años, y puede deberse a un bajo gradiente del perfil de playa con un aporte de sedimento abundante favorables para la progradación de planicies de cordones litorales (Taylor & Stone, 1996). Proceso que ha construido la planicie de cordones litorales de aproximadamente 34 km<sup>2</sup>, con evidencias de suelos enterrados con edades máximas de 2.120 - 3.000 años de antigüedad.



Figura 74. Modelo conceptual de la progradación en la planicie de Pangal durante los últimos años.

Un modelo conceptual para este proceso, a partir de las evidencias recientes, son la subsidencia de la planicie producto de eventos sísmicos de gran magnitud. Eventos cíclicos que causan cambios relativos del nivel del mar, cambiando la profundidad base del fondo marino. El oleaje no afecta el fondo debido a la mayor profundidad, causándose la erosión de la costa. La subsecuente recuperación de la profundidad debido a un mayor aporte de sedimentos y/o acomodación de espacio permite que el oleaje afecte nuevamente el fondo y aporte sedimentos hacia la playa. La acreción de playas puede estar atribuida a procesos costeros regulares, cuando en condiciones de baja a moderada energía se produce el retrabajo de barras de arenas, transportando sedimento hacia el continente y causando acreción de la playa (Monecke *et al.*, 2015).

## 5.2 Eventos catastróficos y construcción de cordones litorales

Los cordones litorales son originados por procesos con una gran capacidad para transportar sedimentos y depositarlos en breves periodos de tiempo. Eventos como las tormentas y tsunamis tienen potencial para erosionar las costas, y destruir cualquier relieve costero previo, dejando evidencias como escarpes de erosión y minerales pesados depositados en capas distintivas (Meyers *et al.*, 1996; Kelsey *et al.*, 2015). En periodos de calma y con una alta carga de sedimentos debido a la previa erosión, estos pueden redistribuirse y construir morfologías, recuperándose la posición de la línea de costa (Taylor & Stone, 1996; Monecke *et al.*, 2017).

### 5.2.1 Cambios relativos del nivel del mar

Los cambios relativos del nivel del mar producen un cambio de nivel base para la construcción de nuevas morfologías costeras. La profundidad del suelo marino y del canal del río Maullín, cercano a la planicie de Pangal debe haber variado con la subsidencia producida por el terremoto de 1960. En las cartas náuticas previa con datos de los años 1931-1937-1944 y 1954 (Figura 75), y posterior modificadas en 1987 (Figura 76) la profundidad se observa similar (profundidad referenciada a la reducción de sonda). Es decir, ya en el año 1984 se encontraba recuperada (en las mismas condiciones previas) la profundidad del fondo marino y del río. Lo que se interpreta como una recuperación producto de la sedimentación y/o cambios en la hidrodinámica, produciéndose un relleno del fondo marino por sedimentos aportados por el cauce del río Maullín, corrientes y deriva litoral.



Figura 75. Extracto de la carta náutica del SHOA, con datos actualizados al año 1954.



Figura 76. Extracto de la carta náutica del SHOA, con datos actualizados al año 1987.

Lo que resalta en ambas cartas náuticas, son la presencia del denominado Banco del Pangal, un banco de arena frente a la planicie de cordones litorales. También, la poca profundidad de toda el área, alcanzando máximos de 9 m en la parte más externa de la bahía. Este banco puede ser el principal aporte de sedimentos hacia la playa de Pangal durante periodos de calma y sin tormentas. Uno de los mecanismos propuestos para el origen de los cordones litorales requiere su crecimiento de una barra de arena sumergida (Tanner, 1995).

Por otra parte, en los últimos años no ha existido un cambio en unidad de metros del nivel del mar a nivel mundial. Se hace necesario, estimar los cambios relativos que podrían existir en la planicie de Pangal producto de variables climáticas como de la componente tectónica.

#### 5.2.2 Erosión y depositación por tsunami

Hacia el interior de la planicie se ha identificado una capa de arena interpretada como la capa de tsunami dejada en 1960. Los efectos minutos más tarde del terremoto fueron la apertura de canales (*breaches*) a través de los cordones litorales (Atwater *et al.*, 2013), surcos por donde ingresaron las olas hacia el interior de la planicie (Figura 77). Estas olas provocaron la erosión del suelo, y posterior depositación de un material con granulometría variable, es decir, desde sedimentos finos a gruesos, mal seleccionados y con clastos angulosos. La subsidencia de la costa, la hace también más vulnerable a los efectos del oleaje y la erosión (Kelsey *et al.*, 2015).



Figura 77. Modelo conceptual en 3D de los efectos del terremoto y tsunami en la planicie de Pangal.

# 5.3 Factores de formación y modificación de cordones litorales

En la dinámica costera de la planicie de Pangal, existen fuentes de ingreso y salida de sedimentos que están en equilibrio para un estado estacionario del sistema (Figura 78). Cuando las entradas superan a las salidas, existe suficiente sedimento para que la planicie de cordones litorales de Pangal comience a progradar y construir nuevas morfologías en dirección hacia el océano. Mientras que cuando las salidas superan a las entradas, la falta de sedimento frente a procesos erosivos como tormentas, hacen retroceder la costa destruyendo las morfologías existentes (Dabrio, 2010).



Figura 78. Modelo conceptual de la dinámica de la planicie costera de Pangal en la parte Norte, junto a la desembocadura del río Maullín.

Los cordones litorales son generados por la acción de las mareas y vientos, es decir, son bermas y dunas construidas por los depósitos dejados por la fuerza del oleaje y viento (Otvos, 2000). Cuando la planicie comienza a progradar, la línea de costa avanza hacia el océano, desplazando todo el ambiente de playa hacia el oeste y dejando la duna y berma anterior inactiva y más hacia el continente. También la vegetación cumple un rol fundamental en la preservación de las morfologías, siendo una trampa para los sedimentos, la cual no permite la migración hacia otros sectores.

La energía del medio de transporte tiene gran influencia en los parámetros granulométricos del sedimento depositado (Tanner, 1995). A medida que se ingresa en el continente desde el océano, la energía disminuye, por tanto, los sedimentos son más finos y mejor seleccionados. Lo que también se refleja, en mayor cantidad y sesgo de la curva granulométrica hacia lo más fino, y una curva más centrada en sedimentos de menor tamaño.

En la construcción del cordón litoral A, a través del análisis bivariado y la distribución granulométrica es posible interpretar que, desde techo a base, la arena de la muestra M011 correspondería a un ambiente supramareal, dominado por el viento, al igual que la arena subyacente y más oxidada de la muestra M012. Además, la muestra M013 depositada entre ambos suelos orgánicos, tiene parámetros granulométricos distintos a los ambientes actuales descritos, distribuyéndose en todos los tamaños, y teniendo características de todos los ambientes. La interpretación para esta muestra correspondería a un depósito de tsunami, flujo que tiene la energía y capacidad necesaria para tener características de todos los ambientes. Por último, bajo el suelo orgánico de 1960, se interpreta un ambiente intermareal superior a supramareal.

# **VI CONCLUSIONES**

Los cordones litorales en la planicie costera de Pangal preservan suelos enterrados, capas de tsunami y superficies erosivas asociadas a un proceso de subsidencia cosísmica, al menos para el caso del terremoto de 1960, sin embargo, es probable que esto se haya repetido en el pasado. Estos resultados, prometen ser una nueva aproximación de indicadores paleosísmicos en planicies de cordones litorales asociados a zonas de subducción. Se identificaron aproximadamente 26 cordones litorales a lo largo de la planicie discontinuos desde norte a sur, con alturas máximas en promedio de 7 m.s.n.m, y bajos promedio de 3 a 4 m.s.n.m. desde continente a océano, evidenciando .

La evolución espacio-temporal de las morfologías en la planicie, con un retroceso de la línea de costa hacia el continente desde 1944 hasta 1980 con un total promedio de 330,83 m, y posterior avance hasta el año 2016 con total promedio de 301,68 m, se ve reflejada en la estratigrafía. Durante el retroceso, se produce la erosión de las morfologías con una tasa promedio de 9,19 m/año, generándose discordancias erosivas y suelos cortados justo en el máximo retroceso de la línea de costa. Mientras que, en el proceso de avance, se produce la progradación y construcción de nuevos cordones litorales a una tasa de 8,29 m/año, con superficies erosivas en subsuperficie posiblemente asociados a eventos de tormentas.

Los ambientes depositacionales recientes, poseen parámetros granulométricos característicos y particulares, que permiten establecer diferencias entre cada uno de ellos. A medida que los ambientes cambian desde más oceánicos a más continentales, el tamaño de clastos se hace más fino, el depósito es mejor seleccionado y la curva granulométrica sesgada hacia lo más fino, mientras que la agudeza aumenta (la curva se vuelve leptocúrtica). El depósito de tsunami se diferencia de todos los otros ambientes, conteniendo una granulometría variable desde clastos gruesos a finos. Siendo la selección versus la asimetría, las

variables más determinantes con valores iguales a 0,52 a 0,54 y -0,01 a 0,01, respectivamente para el depósito de tsunami.

La construcción de cordones litorales deja marcadores de superficies erosivas reconocibles a través de GPR, con una concentración de minerales pesados producto de eventos de alta energía. Asociado a estas superficies erosivas, la tasa de cambio de la línea de costa aumenta su valor, permitiendo el abandono y preservación de los cordones litorales junto al crecimiento de vegetación.

La subsidencia de 1,5 m en la planicie perturba el equilibrio sedimentario de la dinámica costera, produciendo el retroceso de la costa relacionado al abrupto cambio relativo del nivel del mar. Probablemente, la posterior recuperación de la fuente sedimentaria, es decir, el banco del Pangal, genera la recuperación y progradación predominante de la planicie de cordones litorales.

# **VII REFERENCIAS**

- Alcántara-Carrió, J., Cabrera, L., Alonso, I., Alejo, I., Rey, S., & Gago, L. (2001). Parámetros granulométricos: comparación entre el método gráfico y el método de los momentos.
- Angermann, D., Klotz, J., & Reigber, C. (1999). Space-geodetic estimation of the Nazca-South America Euler vector. *Earth and Planetary Science Letters*, 171(3), 329–334. https://doi.org/10.1016/S0012-821X(99)00173-9
- Antinao, J. L., Duhart, P., Clayton, J., Elgueta, S., & McDonough, M. (2000). Área de Ancud-Maullín, Región de Los Lagos. Escala 1: 100.000. Servicio Nacional de Geología y Minería, Chile. *Mapas Geológicos*, (17).
- Araujo, R. S., Silva, G. V. da, Freitas, D., & Klein, A. H. F. (2009). Georreferenciamento de fotografias aéreas e análise da variação da linha de costa. Métodos En Teledetección Aplicada a La Prevención de Riesgos Naturales En El Litoral, 123–138.
- Atwater, B. F., Cisternas, M., Yulianto, E., Prendergast, A. L., Jankaew, K., Eipert, A. A., ... Sawai, Y. (2013). The 1960 tsunami on beach-ridge plains near maullín, chile: Landward descent, renewed breaches, aggraded fans, multiple predecessors . *Andean Geology*, 40(3), 393–418. https://doi.org/10.5027/andgeoV40n3-a01
- Atwater, B. F., Núñez, H. J., & Vita-Finzi, C. (1992). Net Late Holocene emergence despite earthquake-induced submergence, south-central Chile. *Quaternary International*, 15–16(C), 77–85. https://doi.org/10.1016/1040-6182(92)90037-3
- Ayala, E. V. (1982). Estratigrafía de la boca occidental del canal de Chacao, X Región, Chile. In *Proceedings III Congreso Geológico Chileno* (pp. A343– A376).
- Cisternas, M. (2005). Suelos enterrados revelan la prehistoria sísmica del centrosur de Chile durante los últimos dos milenios. *Revista de Geografia Norte Grande*.
- Cisternas, M., Atwater, B. F., Torrejón, F., Sawai, Y., Machuca, G., Lagos, M., ... Husni, M. (2005). Predecessors of the giant 1960 Chile earthquake. *Nature*, *437*(7057), 404–407. https://doi.org/10.1038/nature03943
- Cisternas, M., Contreras, I., & Araneda, A. (2000). Reconocimiento y caracterización de la facies sedimentaria depositada por el tsunami de 1960 en el estuario Maullín, Chile. *Revista Geólogica de Chile*, *27*, 3–11. Retrieved from http://www.scielo.cl/scielo.php?script=sci\_arttext&pid=S0716-02082000000100001&nrm=iso
- Cisternas, M., Garrett, E., Wesson, R., Dura, T., & Ely, L. L. (2017). Unusual geologic evidence of coeval seismic shaking and tsunamis shows variability

in earthquake size and recurrence in the area of the giant 1960 Chile earthquake. *Marine Geology*, 385, 101–113. https://doi.org/10.1016/j.margeo.2016.12.007

- Cisternas, M., Mizobe, C., Wesson, R. L., Ely, L. L., Muñoz, A., Dura, T., ... Melnick, D. (2017). Beach ridges, buried erosional scarps and overhanging soils evidence recurring past co-seismic subsidence midway along the area of the giant 1960 Chile earthquake. https://doi.org/10.1130/abs/2017AM-302380
- Dabrio, C. J. (2010). Capítulo XI: Playas. In A. Arche (Ed.), Sedimentología: Del proceso físico a la cuenca sedimentaria (pp. 441–502).
- DeMets, C., Gordon, R. G., & Argus, D. F. (2010). Geologically current plate motions. *Geophysical Journal International*, 181(1), 1–80. https://doi.org/10.1111/j.1365-246X.2009.04491.x
- Diagnóstico, D. G. A. (2004). Clasificación de los cursos y cuerpos de agua según objetivos de calidad. *Cuenca Río Maullín*.
- Dougherty, A. J. (2018). Prograded coastal barriers provide paleoenvironmental records of storms and sea level during late Quaternary highstands. *Journal of Quaternary Science*. https://doi.org/10.1002/jqs.3029
- Elorza, M. G. (2008). *Geomorfología*. Pearson Educación. Retrieved from https://books.google.cl/books?id=NHohQwAACAAJ
- Folk, R. L., & Ward, W. C. (1957). B razos river bar: A study in the significance of grain size parameters, (1).
- Garrett, E., Shennan, I., Woodroffe, S. A., Cisternas, M., Hocking, E. P., & Gulliver, P. (2015). Reconstructing paleoseismic deformation, 2: 1000 years of great earthquakes at Chucalén, south central Chile. *Quaternary Science Reviews*, 113, 112–122. https://doi.org/10.1016/j.quascirev.2014.10.010
- Heirtzler, J. R., Dickson, G. O., Herron, E. M., Pitman, W. C., & Le Pichon, X. (1968). Marine magnetic anomalies, geomagnetic field reversals, and motions of the ocean floor and continents. *Journal of Geophysical Research*, *73*(6), 2119–2136. https://doi.org/10.1029/JB073i006p02119
- Kanamori, H. (1977). The energy release in great earthquakes. *Journal of Geophysical Research*. https://doi.org/10.1029/JB082i020p02981
- Kelsey, H. M., Witter, R. C., Engelhart, S. E., Briggs, R., Nelson, A., Haeussler, P., & Corbett, D. R. (2015). Beach ridges as paleoseismic indicators of abrupt coastal subsidence during subduction zone earthquakes, and implications for Alaska-Aleutian subduction zone paleoseismology, southeast coast of the Kenai Peninsula, Alaska. *Quaternary Science Reviews*, *113*, 147–158. https://doi.org/10.1016/j.quascirev.2015.01.006
- Kempf, P., Moernaut, J., Van Daele, M., Vandoorne, W., Pino, M., Urrutia, R., & De Batist, M. (2017). Coastal lake sediments reveal 5500 years of tsunami

history in south central Chile. *Quaternary Science Reviews*, *161*, 99–116. https://doi.org/10.1016/j.quascirev.2017.02.018

- Lomnitz, C. (1970). Major earthquakes and tsunamis in Chile during the period 1535 to 1955. *Geologische Rundschau*, *59*(3), 938–960. https://doi.org/10.1007/BF02042278
- Lomnitz, C. (2004). Major Earthquakes of Chile: A Historical Survey, 1535-1960. Seismological Research Letters, 75(3), 368–378. https://doi.org/10.1785/gssrl.75.3.368
- McCalpin, J. P., & Nelson, A. R. (2009). Chapter 1 Introduction to Paleoseismology. In *Paleoseismology* (Vol. 95, pp. 1–27). https://doi.org/https://doi.org/10.1016/S0074-6142(09)95001-X
- Mercer, J. H. (1976). Glacial history of southernmost South America. *Quaternary Research*. https://doi.org/10.1016/0033-5894(76)90047-8
- Meyers, R. A., Smith, D. G., Jol, H. M., & Peterson, C. D. (1996). Evidence for eight great earthquake-subsidence events detected with ground-penetrating radar, Willapa barrier, Washington. *Geology*, 24(2), 99–102. https://doi.org/10.1130/0091-7613(1996)024<0099:EFEGES>2.3.CO;2
- Moernaut, J., Van Daele, M., Heirman, K., Fontijn, K., Strasser, M., Pino, M., ... De Batist, M. (2014). Lacustrine turbidites as a tool for quantitative earthquake reconstruction: New evidence for a variable rupture mode in south central Chile. *Journal of Geophysical Research: Solid Earth*, 119(3), 1607–1633. https://doi.org/10.1002/2013JB010738
- Monecke, K., Meilianda, E., Walstra, D.-J., Hill, E. M., McAdoo, B. G., Qiu, Q., ... Templeton, C. K. (2017). Postseismic coastal development in Aceh, Indonesia - Field observations and numerical modeling. *Marine Geology*. https://doi.org/10.1016/j.margeo.2017.07.012
- Monecke, K., Templeton, C. K., Finger, W., Houston, B., Luthi, S., McAdoo, B. G., ... Sudrajat, S. U. (2015). Beach ridge patterns in West Aceh, Indonesia, and their response to large earthquakes along the northern Sunda trench. *Quaternary* https://doi.org/10.1016/j.quascirev.2014.10.014
- Nentwig, V., Tsukamoto, S., Frechen, M., & Bahlburg, H. (2015). Reconstructing the tsunami record in Tirúa, Central Chile beyond the historical record with quartz-based SAR-OSL. *Quaternary Geochronology*, 30, 299–305. https://doi.org/10.1016/j.quageo.2015.05.020
- Otvos, E. G. (2000). Beach ridges definitions and significance. *Geomorphology*, 32(1–2), 83–108. https://doi.org/10.1016/S0169-555X(99)00075-6
- Pérez-Peña, J. V., Al-Awabdeh, M., Azañón, J. M., Galve, J. P., Booth-Rea, G., & Notti, D. (2017). SwathProfiler and NProfiler: Two new ArcGIS Add-ins for the automatic extraction of swath and normalized river profiles. *Computers*

*and Geosciences, 104,* https://doi.org/10.1016/j.cageo.2016.08.008

- Pitman, C., Herron, E. M., & Heirtzler, J. R. (1968). Magnetic anomalies in the Pacific and sea floor spreading. *Journal of Geophysical Research*, 73(6), 2069–2085. https://doi.org/10.1029/JB073i006p02069
- Plafker, G., & Savage, J. C. (1970). Mechanism of the Chilean earthquakes of May 21 and 22, 1960. Bulletin of the Geological Society of America, 81(4), 1001–1030. https://doi.org/10.1130/0016-7606(1970)81[1001:MOTCEO]2.0.CO;2
- Porter, S. C. (1981). Pleistocene glaciation in the southern Lake District of Chile. *Quaternary Research*. https://doi.org/10.1016/0033-5894(81)90013-2
- Reid, H. F. (1910). *The Mechanics of the Earthquake*. Carnegie Institution. Retrieved from https://books.google.cl/books?id=mRAPtAEACAAJ
- Simms, A. R., DeWitt, R., Zurbuchen, J., & Vaughan, P. (2017). Coastal erosion and recovery from a Cascadia subduction zone earthquake and tsunami. *Marine Geology*, 392, 30–40. https://doi.org/10.1016/j.margeo.2017.08.009
- St-Onge, G., Chapron, E., Mulsow, S., Salas, M., Viel, M., Debret, M., ... Locat, J. (2012). Comparison of earthquake-triggered turbidites from the Saguenay (Eastern Canada) and Reloncavi (Chilean margin) Fjords: Implications for paleoseismicity and sedimentology. *Sedimentary Geology*. https://doi.org/10.1016/j.sedgeo.2011.11.003
- Tamura, T. (2012). Beach ridges and prograded beach deposits as palaeoenvironment records. *Earth-Science Reviews*. https://doi.org/10.1016/j.earscirev.2012.06.004
- Tanner, W. F. (1995). Origin of beach ridges and swales. *Marine Geology*. https://doi.org/10.1016/0025-3227(95)00109-3
- Taylor, M., & Stone, G. W. (1996). of Coastal Beach-Ridges : A Review Florida Summer 1996.
- Thieler, E. R., Himmelstoss, E. A., Zichichi, J. L., & Ergul, A. (2009). The Digital Shoreline Analysis System (DSAS) Version 4.0 - An ArcGIS extension for calculating shoreline change. Open-File Report. Reston. Retrieved from http://pubs.er.usgs.gov/publication/ofr20081278

135–150.

# **VIII ANEXOS**

# ANEXO 1 Guía de Protocolo Instalación GPS

#### INSTALACIÓN ESTACIÓN BASE

- Una vez encendida la antena de la estación base, revisar la conexión en la tableta (controlador)
  - a. Configuración
  - b. Conectar
  - c. Bluetooth
  - d. Coincidir Receptor base (cód. base Termina 37)
  - e. Aceptar
  - f. Configurar la altura de la base
- 2. Configuración de la base
  - a. Configuración
  - b. Estilos de levantamiento
  - c. Levantamiento estático
  - d. Opciones de base
  - e. Tipo de levantamiento: faststatic
  - f. Receptor
  - g. 10°
  - h. Altura al centro del tope protector
  - i. Aceptar y almacenar
  - j. Salir a la pantalla principal
- 3. Abrir un nuevo trabajo
  - a. Topografía general
  - b. Trabajo
  - c. Trabajo nuevo
  - d. Colocar un nombre al trabajo
  - e. Huso correspondiente
  - f. Aceptar
- 4. Para iniciar registro de la base
  - a. Topografía
  - b. Instrumento
  - c. Funciones GNSS
  - Seleccionar Modo Base (se debe colocar amarilla esta opción)
  - e. Iniciar levantamiento
  - f. Estático
  - g. Colocar nombre (ejm. Base)
  - h. Ingresar la altura y unidades de medida
  - i. Iniciar
  - j. Anotar la hora de inicio (hh:mm:ss) en una libreta de campo
- 5. Para finalizar este registro (al término del trabajo del día)
  - a. Menú principal

- b. Topografía general
- c. Instrumento
- d. Funciones GNSS
- e. Seleccionar Modo de base
- f. Finalizar levantamiento
- 6. Para traspasar los datos desde la estación a la tableta (controlador)
  - a. Menú principal
  - b. Topografía general
  - c. Instrumento
  - d. Funciones GNSS
  - e. Importar
  - f. Seleccionar archivos
  - g. Iniciar
  - h. Verificar que los datos se traspasaron al controlador
  - i. Eliminar los datos de la estación

#### INSTALACIÓN ESTACIÓN MÓVIL

- 1. Revisar la conexión de la antena a la tableta
  - a. General
  - b. Configuración
  - c. Conectar
  - d. Bluetooth
  - e. Coincidir Receptor móvil (cód. móvil Termina 85)
- 2. Configuración del receptor
  - a. Configuración
    - b. Estilo de levantamiento
    - c. Cinemático
    - d. Opción del móvil
    - e. Cinemático PP
    - f. Receptor
    - g. 10°
    - h. Ingresar la altura de la antena
    - y unidades de medida
    - i. Aceptar
  - j. Almacenar
- 3. Para iniciar registro
  - a. Topografía General
  - b. Instrumento
  - c. Funciones GNSS
  - d. Modo móvil
  - e. Revisar conexión (todos los íconos activados)
  - f. Iniciar levantamiento y esperar sin mover el rover (cinemático)

- g. Revisar el estado de la inicialización en "Estado del Receptor"
- h. Una vez inicializado, caminar para realizar el registro del perfil
- Anotar la hora de inicio (hh:mm:ss) en una libreta de campo
- 4. Para finalizar este registro
  - a. Menú principal
  - b. Topografía general
  - c. Instrumento
  - d. Funciones GNSS
  - e. Seleccionar Modo de movil
  - f. Finalizar levantamiento
- 5. Para traspasar los datos desde la estación a la tableta (controlador)
  - a. Menú principal
  - b. Topografía general
  - c. Instrumento
  - d. Funciones GNSS
  - e. Importar
  - f. Seleccionar archivos
  - g. Iniciar

a.

- h. Verificar que los datos se traspasaron al controlador
- i. Eliminar los datos de la estación
- 6. Para registrar un Punto de control
  - Primero revisar la
  - configuración
    - i. Configuración
    - ii. Estilos de
      - levantamiento
    - iii. Cinemático
    - iv. Cinemático PP
  - b. Topografía general
  - c. Trabajo
  - d. Abrir trabajo
  - e. Instrumento
  - f. Funciones GNSS
  - g. Modo móvil
  - h. Iniciar levantamiento
  - i. Medir
  - j. Cinematico
  - k. Medir puntos
  - I. Colocar un nombre al punto

- m. Medir (esperar 8 minutos)
- n. Para medir otro punto, volver a Medir y esperar 8 minutos
- Finalizar levantamiento (al término del trabajo)

#### <u>CREAR/TRASLADAR UNA NUEVA</u> <u>ESTACIÓN BASE</u>

- p. Configurar ambas estaciones como base
- q. Primero configurar la base original
- r. Configuración base (original)
  - i. Configuración
  - ii. Conectar
  - iii. Bluetooth
  - iv. Coincidir receptor base (cod. Termina 37)
  - v. En receptor móvil colocar Ninguno
  - vi. Aceptar
  - vii. Configuración de base\*
  - viii. Seguir el mismo protocolo de instalación base.
- s. Configuración móvil como base (rover)
  - i. Configuración
  - ii. Conectar
  - iii. Bluetooth
  - iv. Coincidir receptor base (cód. Termina 85)
  - v. En receptor móvil colocar Ninguno
  - vi. Aceptar
  - vii. Configuración de base\*
  - viii. Seguir el mismo protocolo de instalación base.

# ANEXO 2 Guía protocolo procesamiento de datos en Trimble Business Center v.2

- 1. Transferir los datos de las antenas (base y rover) a la tableta, vía bluetoth
- 2. Transferir los datos desde la tableta al PC, vía cable USB
- 3. Abrir el programa Trimble Business Center
- 4. Iniciar nuevo proyecto (metric)
- 5. Aceptar
- 6. Hacer clic derecho sobre "sin nombre"
- 7. Configuración de proyecto
  - a. Sistema de Coordenadas
    - i. Cambiar
    - ii. UTM
    - iii. Elegir el Huso 18 o 19
    - iv. WGS84
    - v. Modelo del geoide: EGM96 (Global)
    - vi. Finalizar
  - b. Cálculos
    - i. Vector GNSS
    - ii. Cambiar el horizontal a 0,020
    - iii. Cambiar el vertical a 0,050
  - c. Procesamiento de línea base
    - i. General
      - 1. Vectores continuos: SI cuando es un estático y NO cuando es un perfil continuo
    - ii. Calidad (esta configuración es muy restrictiva, para hacer menos restrictiva hay que aumentar los valores.

|     |            | Indicador   | Fallida     |  |  |
|-----|------------|-------------|-------------|--|--|
|     | Horizontal | 0,020 + 2,0 | 0,050 + 2,0 |  |  |
| res | Vertical   | 0,050 + 2,0 | 0,100 + 2,0 |  |  |

- 1. Ingresar estos valo iii. Satélite
  - 1. Verificar que esté en 10 grados
- d. Errores estándares por defecto
  - i. GNSS
    - 1. Horizontal = 0,02 + 2,0
    - 2. Vertical = 0,05 + 2,0
- 8. Para guardar esta configuración hacer lo siguiente
  - a. en la misma ventana de "Configuración de proyecto"
  - b. Procesamiento de línea base
    - i. Nuevo
    - ii. Colocar nombre

- iii. Guardar
- iv. Cargar
- c. Aceptar

#### 9. Importar los archivos

- a. Clic en Inicio (arriba en la barra de menú)
- b. Importar y se abrirá una ventana al lado derecho
- c. Seleccionar la carpeta de importación
- d. Aceptar
  - i. Deberán aparecer en esta ventana los archivos que contiene la carpeta seleccionada
- e. Seleccionar los archivos a procesar
  - i. Al menos uno de la base y uno del rover
- f. Importar
- g. Aceptar
- h. En el mapa, hacer clic derecho sobre base, esta deberá colocarse de color morado
- i. Clic en Añadir coordenadas
- j. Tipo de coordenadas = cuadrícula
- k. En elevación
  - i. Colocar el valor real
    - ii. A un lado en los íconos 2, en ambos casos seleccionar calidad de control
- I. Aceptar

#### 10. Hacer un doble check

- a. Clic derecho en la base
- b. Propiedades
- c. Verificar la elevación que corresponda al valor real
- d. Cerrar

#### 11. Para procesar los datos

- a. Menú
- b. Levantamiento
- c. Procesar línea de base
- d. Siguiente hasta finalizar esta operación
- e. Esperar que se procesen los datos
- f. Deberán aparecer los perfiles en la pantalla unidos a la base
  - i. Estos valores ya están corregidos respecto a la elevación real

#### 12. Para exportar los datos en excel

- a. Seleccionar todos los puntos, hacer un barrido con el cursor sobre el mapa hasta marcar todos los puntos, incluida la base.
- b. Menú
- c. Informes

- d. Lista de puntos
- e. Se abrirá una pestaña con la lista de puntos
- f. Esperar a que se carguen todos los puntos
- g. Para guardar en excel, hacer clic en el símbolo 🛅 como un diskette, que está junto al % del zoom
- h. Seleccionar excel
- i. Seleccionar la carpeta a guardar

# 13. Para exportar los datos a un kmz

- a. Seleccionar todos los puntos, hacer un barrido con el cursor sobre el mapa hasta marcar todos los puntos, incluida la base.
- b. Menú
- c. Levantamiento
- d. Exportar
- e. Se abrirá una ventana al lado derecho
- f. Hacer clic en SIG
- g. Seleccionar exportar kmz
- h. Colocar nombre al archivo
- i. Seleccionar la carpeta a guardar
- j. Exportar
- k. Deberá aparecer un archivo .kmz en la carpeta seleccionada

# ANEXO 3 RMS en la georreferenciación y rectificación de fotografías aéreas e imágenes satelitales

| Link 🗆 🗆 🗸              |             |             |                      |               |                    |            |            |          |  |
|-------------------------|-------------|-------------|----------------------|---------------|--------------------|------------|------------|----------|--|
| 🔗 日                     | +0, +8      | <b>*</b>    | Total                | RMS Error:    | Forward:28.5068    | 3          |            |          |  |
|                         | Link        | X Source    | Y Source             | Х Мар         | Ү Мар              | Residual_x | Residual_y | Residual |  |
|                         | 1           | 5341.298597 | -4655.541639         | 610414.121761 | 5393711.616110     | 29.1147    | 24.2741    | 37.9065  |  |
| $\checkmark$            | 2           | 4616.338814 | -4338.041004         | 612170.958608 | 5395600.744888     | -30.8409   | 17.9491    | 35.6837  |  |
| $\checkmark$            | 3           | 7179.696707 | -5113.052753         | 608642.071342 | 5389939.311690     | 3.326      | 18.8495    | 19.1407  |  |
| $\checkmark$            | 4           | 8890.788087 | -4726.563666         | 610700.427959 | 5386251.986316     | 12.8901    | 20.4396    | 24.1647  |  |
| $\checkmark$            | 5           | 8108.269199 | -4648.928099         | 610918.360394 | 5387760.749333     | -37.0096   | -31.2283   | 48.4243  |  |
| $\checkmark$            | 6           | 5648.593236 | -3827.687861         | 616521.865601 | 5393372.128556     | -2.42052   | -16.7438   | 16.9179  |  |
| $\checkmark$            | 7           | 4875.173813 | -4416.969920         | 611695.855949 | 5394864.381540     | -11.1161   | -27.8069   | 29.9464  |  |
| $\checkmark$            | 8           | 6699.529320 | -4295.471316         | 612779.988326 | 5390662.128344     | -33.8705   | 18.4879    | 38.5877  |  |
| $\checkmark$            | 9           | 5049.291395 | -3151.603647         | 625050.726409 | 5396450.561796     | 3.26642    | 3.68944    | 4.92763  |  |
| $\checkmark$            | 10          | 7869.922883 | -3943.155742         | 615906.708121 | 5387243.043381     | 42.8716    | -22.4456   | 48.392   |  |
| $\square$               | 11          | 7524.033966 | -3386.210266         | 621850.584592 | 5387356.814442     | -11.9694   | -0.0228233 | 11.9694  |  |
| $\checkmark$            | 12          | 4643.201015 | -5055.338039         | 608413.693135 | 5394693.063489     | -15.9677   | -4.14796   | 16.4976  |  |
| $\square$               | 13          | 6124.757034 | -4022.341988         | 614808.685092 | 5392004.891446     | 5.44822    | -1.75895   | 5.72512  |  |
| $\checkmark$            | 14          | 9079.418030 | -4569.923908         | 611601.928678 | 5385572.857749     | 2.1956     | -15.9364   | 16.0869  |  |
| $\checkmark$            | 15          | 7881.756962 | -4190.115093         | 613824.433123 | 5387668.361940     | -15.1343   | 8.51029    | 17.3629  |  |
| $\checkmark$            | 16          | 7141.931400 | -4134.331841         | 614079.095091 | 5389465.547826     | -11.4464   | 39.6436    | 41.263   |  |
| $\checkmark$            | 17          | 6159.058100 | -4128.745420         | 613963.339651 | 5391912.948554     | 23.8942    | -10.9482   | 26.283   |  |
| $\checkmark$            | 18          | 4123.855774 | -4623.142946         | 610415.931515 | 5396248.816601     | 24.609     | 0.639093   | 24.6173  |  |
| $\checkmark$            | 19          | 7563.475686 | -4553.367186         | 611405.263493 | 5388858.830571     | 30.1614    | -13.2216   | 32.932   |  |
| $\checkmark$            | 20          | 8758.920986 | -4309.307547         | 613188.316632 | 5385810.681600     | -10.6042   | 15.5925    | 18.8567  |  |
| $\square$               | 21          | 6683.041393 | -4940.543325         | 609271.886768 | 5390873.663142     | 2.60219    | -23.8146   | 23.9564  |  |
|                         |             |             |                      |               |                    |            |            |          |  |
| Auto                    | Auto Adjust |             | Transform            | ation: 3r     | d Order Polynomial |            | ~          |          |  |
| Degrees Minutes Seconds |             | Forward Re  | esidual Unit : Unkno | own           |                    |            |            |          |  |

RMS en la fotografía aérea del año 1944, basado en 21 puntos de control.

# RMS en la fotografía aérea del año 1961, basado en 20 puntos de control.

| Link                            |         |                    |                      |               |                 |            |            |           |  |
|---------------------------------|---------|--------------------|----------------------|---------------|-----------------|------------|------------|-----------|--|
| 🖆 🖥                             | +ª, +×, |                    | Total                | RMS Error:    | Forward:0.92888 | 7          |            |           |  |
|                                 | Link    | X Source           | Y Source             | Х Мар         | Ү Мар           | Residual_x | Residual_y | Residual  |  |
|                                 | 1       | 7363.343993        | -5608.095699         | 616607.195752 | 5391921.720878  | 0.382881   | 0.16688    | 0.417668  |  |
|                                 | 2       | 3827.607811        | -8195.497115         | 612670.717046 | 5389132.742384  | 0.283394   | -0.889623  | 0.933671  |  |
|                                 | 3       | 4893.107607        | -7922.094551         | 613857.640253 | 5389420.080458  | -1.20053   | -0.0282117 | 1.20086   |  |
|                                 | 4       | 8585.490843        | -9284.414202         | 617844.522185 | 5387897.003454  | -0.258704  | -0.526952  | 0.587032  |  |
|                                 | 5       | 7117.037783        | -8939.059827         | 616280.831557 | 5388287.793819  | 0.328952   | 1.93925    | 1.96695   |  |
|                                 | 6       | 4472.368164        | -10428.293365        | 613347.196246 | 5386682.596598  | -0.0224848 | 0.512522   | 0.513015  |  |
|                                 | 7       | 6592.371674        | -5651.883987         | 615765.991049 | 5391891.066456  | 0.336444   | -1.78572   | 1.81714   |  |
|                                 | 8       | 6113.268524        | -9608.537933         | 615174.513824 | 5387566.241479  | 0.287641   | -1.39628   | 1.4256    |  |
|                                 | 9       | 6962.956932        | -2198.284454         | 616246.012834 | 5395711.672292  | -0.100653  | 0.194196   | 0.218731  |  |
| $\checkmark$                    | 10      | 1184.513863        | -8182.127975         | 609719.903698 | 5389208.804203  | -0.0714467 | 0.0607316  | 0.0937708 |  |
|                                 | 11      | 6267.050591        | -525.437458          | 615527.122604 | 5397598.670289  | 0.0643404  | -0.0454202 | 0.0787571 |  |
|                                 | 12      | 1222.049278        | -2425.818871         | 609784.065285 | 5395676.627278  | -0.0276669 | -0.0539276 | 0.0606106 |  |
|                                 | 13      | 5048.632343        | -5748.298910         | 614059.370086 | 5391822.857487  | -0.303636  | 1.04225    | 1.08557   |  |
|                                 | 14      | 3991.616806        | -7032.225458         | 612868.213537 | 5390418.975513  | 0.864057   | 0.148892   | 0.876792  |  |
|                                 | 15      | 7821.717144        | -6964.152592         | 617077.098275 | 5390422.712707  | 0.432642   | 0.284677   | 0.5179    |  |
|                                 | 16      | 6184.950195        | -7564.470570         | 615288.531830 | 5389795.072962  | -0.541667  | -0.0893763 | 0.548991  |  |
|                                 | 17      | 5912.163837        | -6054.966225         | 615011.788134 | 5391462.122173  | 0.0292228  | -0.763592  | 0.764151  |  |
|                                 | 18      | 4982.988956        | -6574.927994         | 613976.372261 | 5390907.314618  | -0.0313147 | 0.890235   | 0.890786  |  |
|                                 | 19      | 7564.879929        | -5598.830074         | 616824.336421 | 5391926.504058  | -0.869498  | 0.233597   | 0.90033   |  |
|                                 | 20      | 7180.254616        | -6127.149208         | 616399.246616 | 5391354.944349  | 0.418028   | 0.105882   | 0.431229  |  |
|                                 |         |                    |                      |               |                 |            |            |           |  |
| Auto Adjust Transformation: 3rd |         | d Order Polynomial |                      | $\sim$        |                 |            |            |           |  |
| Degrees Minutes Seconds For     |         | Forward Re         | esidual Unit : Unkno | own           |                 |            |            |           |  |
RMS en la fotografía aérea del año 1979, basado en 20 puntos de control.

| Link                                             |              |              |               |                      |                  |             |            |           |  |
|--------------------------------------------------|--------------|--------------|---------------|----------------------|------------------|-------------|------------|-----------|--|
| <u>e</u> 1                                       | - +a + +a +  | <b>.</b>     | Total         | RMS Error:           | Forward:0.807282 | 2           |            |           |  |
|                                                  | Link         | X Source     | Y Source      | Х Мар                | Ү Мар            | Residual_x  | Residual_y | Residual  |  |
| $\checkmark$                                     | 1            | 8311.448311  | -8242.373413  | 612476.932245        | 5391208.929020   | 0.078923    | -0.480789  | 0.487224  |  |
| $\checkmark$                                     | 2            | 4446.641454  | -10718.957054 | 609893.112078        | 5389439.392147   | 0.028809    | -0.0286919 | 0.0406594 |  |
| $\checkmark$                                     | 3            | 9391.784913  | -10813.075417 | 613270.736750        | 5389485.112239   | -1.1612     | 0.606764   | 1.31017   |  |
| $\checkmark$                                     | 4            | 9498.435888  | -7972.676544  | 613277.588369        | 5391428.695683   | 0.0803047   | 0.390362   | 0.398537  |  |
| $\checkmark$                                     | 5            | 8638.560325  | -11275.550960 | 612771.753082        | 5389145.118668   | 1.32405     | -1.49863   | 1.99975   |  |
| $\checkmark$                                     | 6            | 7804.831027  | -11131.835190 | 612197.076933        | 5389223.435491   | -1.13481    | 0.97598    | 1.49677   |  |
| $\checkmark$                                     | 7            | 5992.332998  | -2592.478688  | 610738.007175        | 5395030.786689   | -0.058651   | -0.0881546 | 0.105883  |  |
| $\checkmark$                                     | 8            | 4390.065228  | -3597.813965  | 609662.050439        | 5394300.006061   | -0.00326613 | 0.123874   | 0.123917  |  |
| $\checkmark$                                     | 9            | 2635.288457  | -1392.213962  | 608417.977118        | 5395721.879738   | -0.0302677  | -0.0227236 | 0.0378483 |  |
| $\checkmark$                                     | 10           | 7891.322472  | -10139.380041 | 612236.663089        | 5389900.346845   | 0.938669    | 0.0435054  | 0.939677  |  |
| $\checkmark$                                     | 11           | 9791.658018  | -7450.556023  | 613462.579342        | 5391795.031885   | -0.229966   | -0.639172  | 0.679283  |  |
| $\checkmark$                                     | 12           | 9887.662462  | -5390.090418  | 613479.195209        | 5393209.920548   | 0.0328742   | -0.217867  | 0.220333  |  |
| $\checkmark$                                     | 13           | 8051.683177  | -8421.719993  | 612302.656918        | 5391079.182606   | -1.1055     | -0.659459  | 1.28725   |  |
| $\checkmark$                                     | 14           | 8818.614822  | -9469.515594  | 612853.301988        | 5390383.394144   | 0.531666    | 0.834334   | 0.989334  |  |
| $\checkmark$                                     | 15           | 9017.924049  | -5756.709381  | 612896.884562        | 5392934.901441   | -0.0933447  | 0.484384   | 0.493296  |  |
| $\checkmark$                                     | 16           | 8676.776184  | -7107.701439  | 612697.676536        | 5391998.106134   | 0.0669822   | 0.171157   | 0.183797  |  |
| $\checkmark$                                     | 17           | 9651.428566  | -8517.743149  | 613394.671370        | 5391059.849825   | 0.503923    | -0.133164  | 0.521221  |  |
| $\checkmark$                                     | 18           | 5629.736206  | -3789.880951  | 610517.190746        | 5394204.167211   | 0.214392    | -0.0025679 | 0.214407  |  |
| $\checkmark$                                     | 19           | 10044.262466 | -6077.710098  | 613600.450957        | 5392744.592488   | 0.012879    | 0.167154   | 0.16765   |  |
| $\checkmark$                                     | 20           | 4594.593552  | -10776.365067 | 609994.663979        | 5389403.212695   | 0.0035434   | -0.0263012 | 0.0265388 |  |
|                                                  |              |              |               |                      |                  |             |            |           |  |
| Auto Adjust Transformation: 3rd Order Polynomial |              |              |               |                      |                  | $\sim$      |            |           |  |
| De                                               | grees Minute | s Seconds    | Forward Re    | esidual Unit : Unkno | wn               |             |            |           |  |

RMS en la fotografía aérea del año 1980, basado en 22 puntos de control.

| Link         | nk 🗆 🗆 🗸      |             |               |                      |                    |            |              |           |  |  |
|--------------|---------------|-------------|---------------|----------------------|--------------------|------------|--------------|-----------|--|--|
| <b>6</b>     | +a, +a,       |             | Total         | RMS Error:           | Forward:0.84444    | 1          |              |           |  |  |
|              | Link          | X Source    | Y Source      | Х Мар                | Ү Мар              | Residual_x | Residual_y   | Residual  |  |  |
| $\checkmark$ | 1             | 8680.837868 | -2462.114081  | 616644.158802        | 5392015.040484     | -0.519297  | 0.593392     | 0.788533  |  |  |
| $\checkmark$ | 2             | 8937.713661 | -2655.327716  | 616818.784151        | 5391867.534981     | 0.958817   | 0.193731     | 0.978193  |  |  |
| $\checkmark$ | 3             | 9110.798601 | -3170.992579  | 616915.798234        | 5391495.177292     | 0.592975   | -0.684959    | 0.905973  |  |  |
| $\checkmark$ | 4             | 9611.383893 | -4826.234097  | 617191.626911        | 5390304.946786     | 0.0813855  | 0.433863     | 0.441431  |  |  |
| $\checkmark$ | 5             | 8050.889680 | -7486.090271  | 615954.242600        | 5388501.675471     | -1.58977   | -0.000866348 | 1.58977   |  |  |
| $\checkmark$ | 6             | 8122.137257 | -9861.697872  | 615889.110872        | 5386830.343309     | 0.56871    | -0.0161623   | 0.56894   |  |  |
| $\checkmark$ | 7             | 4954.738684 | -10216.027656 | 613642.198566        | 5386744.574040     | -0.464569  | -0.0790996   | 0.471255  |  |  |
| $\checkmark$ | 8             | 2502.273535 | -10201.748538 | 611931.575700        | 5386872.632630     | 0.0687909  | 0.154024     | 0.168687  |  |  |
| $\checkmark$ | 9             | 4356.539583 | -7977.269230  | 613336.780594        | 5388339.220980     | 0.445763   | 0.205517     | 0.490858  |  |  |
| $\checkmark$ | 10            | 4722.303395 | -4042.984991  | 613774.975568        | 5391078.590000     | -1.29106   | 0.800615     | 1.51915   |  |  |
| $\checkmark$ | 11            | 5056.569687 | -2812.536103  | 614070.251158        | 5391924.464608     | 0.548827   | -0.629831    | 0.835403  |  |  |
| $\checkmark$ | 12            | 3693.948044 | -2800.592336  | 613119.336757        | 5391991.933493     | 0.280659   | 0.100076     | 0.297968  |  |  |
| $\checkmark$ | 13            | 3305.856087 | -7141.783068  | 612643.614972        | 5388973.031622     | 0.453943   | 0.348663     | 0.57239   |  |  |
| $\checkmark$ | 14            | 6139.043755 | -6325.904964  | 614664.058926        | 5389410.785623     | 1.67271    | 0.552734     | 1.76167   |  |  |
| $\checkmark$ | 15            | 8643.665909 | -2594.610431  | 616610.672370        | 5391922.359944     | -0.75623   | -0.142254    | 0.769493  |  |  |
| $\checkmark$ | 16            | 4028.718750 | -6461.150494  | 613177.854565        | 5389414.782031     | -1.08263   | -0.899694    | 1.40767   |  |  |
| $\checkmark$ | 17            | 6976.238678 | -5720.355450  | 615280.053547        | 5389795.156043     | 0.339453   | -0.391573    | 0.518226  |  |  |
| $\checkmark$ | 18            | 9454.459099 | -4653.372169  | 617087.933931        | 5390433.324316     | 0.134746   | -0.23395     | 0.26998   |  |  |
| $\checkmark$ | 19            | 9087.765862 | -2983.548734  | 616907.730334        | 5391629.089096     | -0.463419  | -0.161645    | 0.490802  |  |  |
| $\checkmark$ | 20            | 8938.757278 | -2571.846192  | 616822.841651        | 5391926.337446     | 0.00239567 | 0.0894418    | 0.0894739 |  |  |
| $\checkmark$ | 21            | 2679.487045 | -8909.538280  | 612121.458039        | 5387765.662689     | -0.013024  | -0.244955    | 0.245301  |  |  |
| $\checkmark$ | 22            | 3817.169830 | -6102.834232  | 613048.110112        | 5389676.245767     | 0.0308311  | 0.0129312    | 0.0334331 |  |  |
|              |               |             |               |                      |                    |            |              |           |  |  |
| 🗹 A.         | uto Adjust    |             | Transform     | ation: 3rd           | d Order Polynomial |            | $\sim$       |           |  |  |
| De           | egrees Minute | es Seconds  | Forward Re    | esidual Unit : Unkno | wn                 |            |              |           |  |  |

RMS en la fotografía aérea de 1994, dividida en dos segmentos con 21 puntos de control cada uno.

| Link         | ink 🗆 🗆 🗠                                          |              |               |               |                |             |            |            |  |  |
|--------------|----------------------------------------------------|--------------|---------------|---------------|----------------|-------------|------------|------------|--|--|
| 1            | <b>-</b> + <sup>±</sup> + <sup>±</sup>             | <b>.</b>     | Total         | RMS Error:    | Forward:0.9901 | 31          |            |            |  |  |
|              | Link                                               | X Source     | Y Source      | Х Мар         | Ү Мар          | Residual_x  | Residual_y | Residual   |  |  |
| $\checkmark$ | 1                                                  | 9151.016337  | -8577.405961  | 612493.998462 | 5391239.144953 | 0.449616    | 0.268117   | 0.523489   |  |  |
| $\checkmark$ | 2                                                  | 1259.955478  | -10250.839898 | 608990.461637 | 5390513.523710 | -0.00537944 | 0.00209023 | 0.00577126 |  |  |
| $\checkmark$ | 3                                                  | 4674.276951  | -2135.197685  | 610544.561099 | 5394088.580860 | 0.098578    | -1.0402    | 1.04486    |  |  |
| $\checkmark$ | 4                                                  | 10126.250770 | -4492.332274  | 612933.753378 | 5393037.058445 | -0.655301   | -0.461902  | 0.801731   |  |  |
| $\checkmark$ | 5                                                  | 9270.833555  | -6134.972207  | 612553.678659 | 5392320.697637 | -1.05325    | -0.317396  | 1.10003    |  |  |
| $\checkmark$ | 6                                                  | 9046.286680  | -7994.077706  | 612448.744699 | 5391497.841825 | -0.467385   | -0.516491  | 0.696571   |  |  |
| $\checkmark$ | 7                                                  | 8757.729884  | -9338.076621  | 612317.279593 | 5390903.851053 | 1.05759     | 0.878209   | 1.37468    |  |  |
| $\checkmark$ | 8                                                  | 8529.178941  | -10377.960318 | 612209.990837 | 5390443.607424 | -1.04755    | 1.35985    | 1.71655    |  |  |
| $\checkmark$ | 9                                                  | 7843.556078  | -11041.468284 | 611903.602724 | 5390147.273498 | -0.0352326  | -0.244828  | 0.24735    |  |  |
| $\checkmark$ | 10                                                 | 9405.069879  | -10494.506481 | 612601.222175 | 5390387.251062 | 0.43783     | -1.23263   | 1.30808    |  |  |
| $\checkmark$ | 11                                                 | 8427.942349  | -9324.210821  | 612169.553603 | 5390908.216687 | -0.222613   | -1.70788   | 1.72233    |  |  |
| $\checkmark$ | 12                                                 | 2829.870450  | -1528.283247  | 609738.601172 | 5394373.339242 | -0.00440761 | -0.147735  | 0.147801   |  |  |
| $\checkmark$ | 13                                                 | 9790.607836  | -7538.882800  | 612780.257255 | 5391694.692218 | -0.129534   | -0.103739  | 0.165954   |  |  |
| $\checkmark$ | 14                                                 | 9259.563382  | -6686.848211  | 612548.481791 | 5392076.486732 | 0.378894    | -0.303064  | 0.485189   |  |  |
| $\checkmark$ | 15                                                 | 9755.243385  | -5128.907642  | 612771.922863 | 5392762.155812 | 1.4076      | 0.979399   | 1.71481    |  |  |
| $\checkmark$ | 16                                                 | 4483.083332  | -3374.462969  | 610458.084069 | 5393555.828024 | 0.148596    | 0.0211576  | 0.150095   |  |  |
| $\checkmark$ | 17                                                 | 8042.082549  | -10336.069802 | 611994.985580 | 5390460.726000 | 0.584902    | -0.0414868 | 0.586371   |  |  |
| $\checkmark$ | 18                                                 | 9215.278994  | -9478.912886  | 612518.368289 | 5390840.073113 | -0.707428   | 1.35371    | 1.52741    |  |  |
| $\checkmark$ | 19                                                 | 4471.842163  | -2262.021820  | 610455.305938 | 5394038.032113 | -0.411633   | 1.08153    | 1.15721    |  |  |
| $\checkmark$ | 20                                                 | 4056.844269  | -1521.883484  | 610274.883998 | 5394357.662648 | 0.160348    | 0.130636   | 0.206826   |  |  |
| $\checkmark$ | 21                                                 | 9357.198669  | -4526.707703  | 612596.156496 | 5393029.528829 | 0.0157585   | 0.0426676  | 0.0454847  |  |  |
|              |                                                    |              |               |               |                |             |            |            |  |  |
| A            | Auto Adjust Transformation: 3rd Order Polynomial 🗸 |              |               |               |                |             |            |            |  |  |

Degrees Minutes Seconds

Forward Residual Unit : Unknown

| Link         |                                                         |             |               |               |                    |             |            |           | □ × |
|--------------|---------------------------------------------------------|-------------|---------------|---------------|--------------------|-------------|------------|-----------|-----|
| 1            | +ª, +×                                                  |             | Total         | RMS Error:    | Forward:0.70906    | 8           |            |           |     |
|              | Link                                                    | X Source    | Y Source      | Х Мар         | Ү Мар              | Residual_x  | Residual_y | Residual  |     |
|              | 1                                                       | 1553.207974 | -8464.509235  | 609124.084538 | 5389482.339593     | -0.192062   | 0.0794958  | 0.207864  |     |
|              | 2                                                       | 2150.220748 | -9255.643839  | 609379.804841 | 5389137.322237     | 1.72385     | -0.295494  | 1.749     |     |
|              | 3                                                       | 2248.078516 | -9359.967121  | 609417.904917 | 5389090.755477     | -1.66158    | -0.0492304 | 1.66231   |     |
| $\checkmark$ | 4                                                       | 3590.381666 | -8707.100939  | 610009.514434 | 5389365.922694     | 0.222316    | 0.408138   | 0.464759  |     |
|              | 5                                                       | 4311.381636 | -10466.553649 | 610302.673353 | 5388560.529416     | 0.128776    | 0.0692064  | 0.146195  |     |
|              | 6                                                       | 6211.809767 | -7965.910925  | 611161.380279 | 5389661.793598     | -0.266806   | -0.825886  | 0.867913  |     |
|              | 7                                                       | 9169.495010 | -4352.017265  | 612494.618362 | 5391241.359257     | -0.402517   | 0.255115   | 0.476554  |     |
|              | 8                                                       | 8999.122393 | -2011.049670  | 612433.102614 | 5392280.909253     | 0.114218    | -0.0662644 | 0.132048  |     |
|              | 9                                                       | 9468.562254 | -2095.366191  | 612639.478027 | 5392245.190432     | -0.03463    | -0.0298734 | 0.0457347 |     |
|              | 10                                                      | 9433.090013 | -6273.694849  | 612601.047221 | 5390387.414841     | 0.338972    | 0.166798   | 0.377787  |     |
|              | 11                                                      | 9654.276599 | -6775.840874  | 612697.620331 | 5390163.841477     | 0.181901    | -0.359579  | 0.402971  |     |
|              | 12                                                      | 9338.126183 | -7385.733168  | 612552.363790 | 5389893.965937     | -0.503448   | -0.875532  | 1.00996   |     |
|              | 13                                                      | 9056.717882 | -10298.235607 | 612418.616648 | 5388600.944601     | 0.236441    | -0.691108  | 0.730435  |     |
|              | 14                                                      | 8057.970398 | -6671.067200  | 611987.146514 | 5390219.756867     | 0.252625    | 0.0761392  | 0.26385   |     |
|              | 15                                                      | 4639.212524 | -10582.641113 | 610443.995687 | 5388501.256159     | -0.170832   | -0.171536  | 0.242091  |     |
|              | 16                                                      | 9482.759644 | -9478.278992  | 612613.368225 | 5388969.910660     | -0.330828   | 0.734447   | 0.805518  |     |
|              | 17                                                      | 3675.017883 | -10131.226746 | 610029.913494 | 5388725.076772     | 0.0575726   | 0.235372   | 0.242311  |     |
|              | 18                                                      | 9089.449524 | -6456.834045  | 612446.645100 | 5390307.991652     | 0.27695     | 0.353129   | 0.448778  |     |
|              | 19                                                      | 8534.077209 | -9281.599213  | 612182.817766 | 5389053.693898     | 0.144009    | 0.652376   | 0.668081  |     |
|              | 20                                                      | 7161.524475 | -7723.477905  | 611581.745669 | 5389760.109473     | -0.110122   | 0.317775   | 0.336315  |     |
|              | 21                                                      | 9798.526978 | -3329.343651  | 612779.004510 | 5391694.266322     | -0.00480953 | 0.0165125  | 0.0171987 |     |
|              |                                                         |             |               |               |                    |             |            |           |     |
| Auto         | Adjust                                                  |             | Transform     | ation: 3r     | d Order Polynomial |             | ~          |           |     |
| Degre        | Degrees Minutes Seconds Forward Residual Unit : Unknown |             |               |               |                    |             |            |           |     |

RMS para la imagen satelital del año 2005, dividida en dos segmentos con 20 puntos de control cada uno.

| Lin          | ink     |             |              |               |                 |            |            |          |  |  |
|--------------|---------|-------------|--------------|---------------|-----------------|------------|------------|----------|--|--|
| 1            | #+ ⊕+ ₩ |             | Total        | RMS Error:    | Forward:0.87476 | 8          |            |          |  |  |
|              | Link    | X Source    | Y Source     | Х Мар         | Ү Мар           | Residual_x | Residual_y | Residual |  |  |
|              | 1       | 1767.400000 | -2459.642677 | 612958.105632 | 5391239.086756  | -0.0775655 | 0.181618   | 0.197488 |  |  |
| $\square$    | 2       | 1817.704202 | -2606.736786 | 613006.392187 | 5391096.872930  | 0.415029   | 0.836424   | 0.933731 |  |  |
|              | 3       | 1101.262675 | -2634.511511 | 612301.276193 | 5391079.674978  | -0.166408  | -0.116904  | 0.203367 |  |  |
| $\checkmark$ | 4       | 1857.490413 | -1776.488094 | 613048.857897 | 5391902.442596  | 0.130928   | -1.15382   | 1.16123  |  |  |
| $\square$    | 5       | 2940.633397 | -2410.116470 | 614112.485024 | 5391268.367370  | 0.386235   | 0.851045   | 0.934588 |  |  |
| $\checkmark$ | 6       | 2281.812300 | -1937.681201 | 613469.943114 | 5391738.268310  | 0.29184    | 1.07493    | 1.11385  |  |  |
| $\square$    | 7       | 2025.424031 | -2235.752876 | 613212.767600 | 5391449.871899  | -0.750798  | -1.24057   | 1.45007  |  |  |
| $\checkmark$ | 8       | 2248.893188 | -2519.528132 | 613430.652410 | 5391172.720303  | 0.209082   | 0.154369   | 0.259894 |  |  |
| $\square$    | 9       | 1351.243392 | -1598.041662 | 612543.723206 | 5392089.150609  | -0.278178  | -0.269618  | 0.387397 |  |  |
| $\square$    | 10      | 1255.023760 | -1962.987048 | 612450.325102 | 5391730.639475  | 0.523075   | 0.932426   | 1.06912  |  |  |
| $\checkmark$ | 11      | 1750.256274 | -2119.472032 | 612941.392751 | 5391569.772486  | -0.335031  | 0.720657   | 0.794728 |  |  |
| $\square$    | 12      | 1627.392635 | -2150.999415 | 612819.750320 | 5391539.543780  | -0.512526  | -0.894519  | 1.03094  |  |  |
| $\checkmark$ | 13      | 2755.049893 | -2081.890287 | 613936.558804 | 5391589.285546  | -0.395607  | 0.864485   | 0.950704 |  |  |
| $\square$    | 14      | 2540.113405 | -2106.089574 | 613724.362546 | 5391567.060502  | 0.814784   | -1.11533   | 1.38125  |  |  |
| $\square$    | 15      | 2672.417045 | -2566.832696 | 613843.954452 | 5391118.855439  | -0.571047  | -1.04664   | 1.19229  |  |  |
| $\square$    | 16      | 2142.063838 | -1576.995057 | 613336.879480 | 5392097.286562  | 0.296879   | 0.582991   | 0.654229 |  |  |
| $\checkmark$ | 17      | 2501.732075 | -1771.576382 | 613691.421856 | 5391896.864286  | -0.445429  | -0.0143179 | 0.445659 |  |  |
| $\square$    | 18      | 3178.106822 | -1805.859485 | 614367.301332 | 5391853.472533  | -0.0289723 | -0.391042  | 0.392114 |  |  |
| $\checkmark$ | 19      | 1206.583984 | -2475.031128 | 612405.968930 | 5391232.065328  | 0.0202648  | -0.474423  | 0.474855 |  |  |
| $\square$    | 20      | 1697.776855 | -2316.925781 | 612890.580732 | 5391378.676538  | 0.473445   | 0.518235   | 0.701938 |  |  |
|              |         |             |              |               |                 |            |            |          |  |  |
|              |         |             |              |               |                 |            |            |          |  |  |

 $\sim$ 

| Auto Adjust             |
|-------------------------|
| Degrees Minutes Seconds |

3rd Order Polynomial Forward Residual Unit : Unknown

Transformation:

| Link         | nk 🗆 🗆 🗠     |             |              |                      |                    |             |             |           |  |  |  |
|--------------|--------------|-------------|--------------|----------------------|--------------------|-------------|-------------|-----------|--|--|--|
| 1            |              | -+ <b>*</b> | Total        | RMS Error:           | Forward:0.96765    | 1           |             |           |  |  |  |
|              | Link         | X Source    | Y Source     | Х Мар                | Ү Мар              | Residual_x  | Residual_y  | Residual  |  |  |  |
| $\square$    | 1            | 2017.952669 | -300.570734  | 612404.535367        | 5391232.721321     | 0.175124    | 0.990652    | 1.00601   |  |  |  |
| $\checkmark$ | 2            | 2877.563590 | -252.173936  | 613295.234892        | 5391267.888926     | -0.465466   | -0.386763   | 0.605181  |  |  |  |
| $\checkmark$ | 3            | 2856.311192 | -1435.401907 | 613239.980962        | 5390043.394811     | -0.616131   | -0.284536   | 0.678659  |  |  |  |
| $\checkmark$ | 4            | 847.738700  | -2339.071601 | 611230.731110        | 5389189.384248     | -0.482516   | 1.12777     | 1.22666   |  |  |  |
| $\checkmark$ | 5            | 812.410665  | -2479.098583 | 611198.187295        | 5389054.975646     | -0.569382   | 0.128464    | 0.583694  |  |  |  |
| $\checkmark$ | 6            | 569.701255  | -2419.472350 | 610958.738899        | 5389114.507015     | 0.782326    | -0.435952   | 0.895593  |  |  |  |
| $\checkmark$ | 7            | 990.489237  | -2079.099917 | 611367.983988        | 5389437.299328     | -0.668509   | -0.628193   | 0.91735   |  |  |  |
| $\checkmark$ | 8            | 1191.289078 | -1435.600587 | 611561.130208        | 5390073.623517     | 0.845222    | -0.299764   | 0.896805  |  |  |  |
| $\checkmark$ | 9            | 1945.814801 | -1273.786588 | 612324.719235        | 5390225.957676     | -1.06511    | 1.03229     | 1.48327   |  |  |  |
| $\checkmark$ | 10           | 1750.029662 | -548.180329  | 612125.434670        | 5390975.576675     | 0.11623     | -0.991942   | 0.998729  |  |  |  |
| $\checkmark$ | 11           | 1256.248069 | -1250.955421 | 611622.196164        | 5390260.671078     | -1.25317    | 0.800011    | 1.48676   |  |  |  |
| $\checkmark$ | 12           | 1265.462607 | -2076.368121 | 611643.362873        | 5389435.434011     | 0.756108    | -0.455861   | 0.882898  |  |  |  |
| $\checkmark$ | 13           | 1674.923831 | -2403.451102 | 612048.705350        | 5389110.525028     | -0.00177917 | -0.747965   | 0.747967  |  |  |  |
| $\checkmark$ | 14           | 3019.951625 | -750.055609  | 613426.195084        | 5390744.264233     | 0.806592    | 0.457734    | 0.927421  |  |  |  |
| $\checkmark$ | 15           | 1656.101809 | -1598.536030 | 612033.161048        | 5389902.887550     | 1.13856     | 0.800206    | 1.39164   |  |  |  |
| $\checkmark$ | 16           | 1890.274746 | -1043.057995 | 612269.963605        | 5390460.894916     | -0.545733   | -1.35644    | 1.46211   |  |  |  |
| $\checkmark$ | 17           | 1791.587828 | -951.416423  | 612170.480073        | 5390558.261778     | 0.822423    | -0.076635   | 0.825986  |  |  |  |
| $\checkmark$ | 18           | 2314.701897 | -1327.198194 | 612698.060294        | 5390162.973487     | 0.0984891   | -0.00583301 | 0.0986616 |  |  |  |
| $\checkmark$ | 19           | 2759.887055 | -2261.006452 | 613126.818444        | 5389232.432043     | 0.0856415   | -0.113766   | 0.142398  |  |  |  |
| $\checkmark$ | 20           | 2165.709569 | -2565.415624 | 612532.298505        | 5388949.856478     | 0.0410811   | 0.446519    | 0.448404  |  |  |  |
|              |              |             |              |                      |                    |             |             |           |  |  |  |
| ✓ A          | uto Adjust   |             | Transform    | ation: 3r            | d Order Polynomial |             | $\sim$      |           |  |  |  |
| D            | egrees Minut | es Seconds  | Forward Re   | esidual Unit : Unkno | own                |             |             |           |  |  |  |

RMS para la imagen satelital del año 2011, dividida en dos segmentos con 24 puntos de control cada uno.

| Link                                                    |                                        |             |              |               |                     |               |            |           | □ × |
|---------------------------------------------------------|----------------------------------------|-------------|--------------|---------------|---------------------|---------------|------------|-----------|-----|
| 1                                                       | ++++++++++++++++++++++++++++++++++++++ | -+ <b>f</b> | Total        | RMS Error:    | Forward:0.85179     | 99            |            |           |     |
|                                                         | Link                                   | X Source    | Y Source     | Х Мар         | Ү Мар               | Residual_x    | Residual_y | Residual  |     |
| $\square$                                               | 1                                      | 2103.369909 | -307.577272  | 613311.694289 | 5393405.153187      | -0.174035     | 0.15688    | 0.234306  |     |
| $\checkmark$                                            | 2                                      | 1408.837270 | -575.468433  | 612598.640780 | 5393129.985970      | 0.35035       | -0.591538  | 0.687504  |     |
| $\checkmark$                                            | 3                                      | 3607.885351 | -1286.386733 | 614819.528617 | 5392366.740901      | 0.0540391     | -1.18302   | 1.18426   |     |
|                                                         | 4                                      | 3337.692130 | -1327.229025 | 614544.890568 | 5392332.609583      | 0.903101      | 1.21104    | 1.5107    |     |
| $\checkmark$                                            | 5                                      | 2323.788798 | -1016.386057 | 613525.448946 | 5392665.456082      | -0.460985     | 0.22777    | 0.514185  |     |
|                                                         | 6                                      | 2377.547536 | -1856.383396 | 613569.899035 | 5391818.787722      | 0.980658      | -0.816763  | 1.27624   |     |
| $\checkmark$                                            | 7                                      | 2765.399920 | -1953.715328 | 613953.281051 | 5391716.393767      | 0.355295      | -0.685996  | 0.772545  |     |
|                                                         | 8                                      | 1159.165127 | -1380.202323 | 612345.140335 | 5392312.501210      | -1.5979       | 0.341232   | 1.63393   |     |
| $\square$                                               | 9                                      | 1578.929023 | -933.639151  | 612771.120354 | 5392760.706273      | -0.0514558    | 0.52945    | 0.531945  |     |
|                                                         | 10                                     | 937.629886  | -2447.371034 | 612137.177419 | 5391261.838692      | -0.0346493    | -0.048159  | 0.0593284 |     |
|                                                         | 11                                     | 1133.054915 | -1764.536745 | 612325.296545 | 5391929.383777      | 1.11608       | 0.0340743  | 1.1166    |     |
|                                                         | 12                                     | 1520.464484 | -1160.861967 | 612712.647320 | 5392529.459977      | 0.834435      | 0.0028202  | 0.834439  |     |
|                                                         | 13                                     | 3610.592054 | -1665.087125 | 614806.299424 | 5391989.444314      | -0.521479     | 0.322333   | 0.613057  |     |
|                                                         | 14                                     | 3305.557740 | -2599.915392 | 614466.970620 | 5391081.233747      | 0.243091      | -0.734685  | 0.773858  |     |
|                                                         | 15                                     | 3623.904456 | -1911.009548 | 614809.871306 | 5391746.926745      | -0.0815453    | 0.529524   | 0.535766  |     |
|                                                         | 16                                     | 3096.003960 | -2119.044729 | 614276.867115 | 5391550.473227      | 0.171947      | 0.623517   | 0.646791  |     |
|                                                         | 17                                     | 2879.686616 | -1630.778580 | 614073.137541 | 5392034.273639      | -1.14426      | -0.811474  | 1.40279   |     |
|                                                         | 18                                     | 2575.471069 | -2457.732539 | 613754.611644 | 5391228.748070      | -0.340333     | 1.06789    | 1.12081   |     |
| $\sim$                                                  | 19                                     | 1626.117462 | -2153.062042 | 612819.572274 | 5391539.369524      | -0.728209     | -0.151267  | 0.743754  |     |
|                                                         | 20                                     | 2986.869751 | -2546.866974 | 614156.144903 | 5391136.135022      | -0.0659937    | -0.0699378 | 0.0961585 |     |
| $\square$                                               | 21                                     | 2051.010742 | -2248.117172 | 613241.089198 | 5391440.192550      | -0.0895237    | 0.431805   | 0.440987  |     |
| $\checkmark$                                            | 22                                     | 1302.610992 | -2459.827087 | 612500.816447 | 5391244.596835      | 0.165986      | -0.161055  | 0.231279  |     |
| $\checkmark$                                            | 23                                     | 1870.271240 | -1707.730652 | 613063.985546 | 5391975.177311      | 0.115478      | -0.283872  | 0.306462  |     |
|                                                         | 24                                     | 2048.110352 | -1241.173889 | 613244.906800 | 5392440.893287      | -9.90821e-005 | 0.0594245  | 0.0594246 |     |
|                                                         | uto Adjust                             |             | Transform    | ation: 3r     | rd Order Polynomial |               | ~          |           |     |
| Degrees Minutes Seconds Forward Residual Unit : Unknown |                                        |             |              |               |                     |               |            |           |     |

| Link      | c                                                       |              |              |               |                      |             |            |           | □ × |
|-----------|---------------------------------------------------------|--------------|--------------|---------------|----------------------|-------------|------------|-----------|-----|
| <b>6</b>  | *** #*                                                  | <b>*</b>     | Total        | RMS Error:    | Forward:0.8843       | 36          |            |           |     |
|           | Link                                                    | X Source     | Y Source     | Х Мар         | Y Map                | Residual_x  | Residual_y | Residual  |     |
|           | 1                                                       | 845.479767   | -2344.557553 | 611231.221153 | 5389188.587189       | -0.309166   | 1.09907    | 1.14173   |     |
| $\square$ | 2                                                       | 718.350760   | -2469.048094 | 611110.57091  | 5389069.524451       | 1.27431     | 0.540143   | 1.38406   |     |
|           | 3                                                       | 567.272656   | -2424.052636 | 610958.170606 | 5 5389113.974540     | -1.17363    | -1.11056   | 1.61578   |     |
| $\sim$    | 4                                                       | 789.553163   | -1804.998990 | 611166.398106 | 5 5389716.564287     | 0.988898    | 0.253104   | 1.02078   |     |
| $\square$ | 5                                                       | 1231.835610  | -1251.909317 | 611601.688170 | 5390260.995193       | -1.00191    | -0.748243  | 1.25048   |     |
|           | 6                                                       | 1745.583740  | -273.081832  | 612123.00106  | 5391269.274684       | 0.166248    | 0.0288438  | 0.168731  |     |
| $\square$ | 7                                                       | 4364.195619  | -1197.220794 | 614773.205320 | 5390266.766429       | 0.0749279   | -0.32384   | 0.332395  |     |
|           | 8                                                       | 4634.364210  | -750.924750  | 615076.153842 | 2 5390719.998585     | -0.209651   | 0.443289   | 0.490366  |     |
| $\square$ | 9                                                       | 4150.051667  | -334.646005  | 614608.475407 | 5391163.943848       | 0.309283    | -0.456396  | 0.55132   |     |
|           | 10                                                      | 2618.179478  | -1033.690502 | 613012.637840 | 5390461.198085       | 0.832436    | -0.904553  | 1.2293    |     |
| $\square$ | 11                                                      | 1944. 169789 | -1276.768638 | 612323.264587 | 5390226.776783       | -0.286634   | 1.08705    | 1.12421   |     |
|           | 12                                                      | 1678.178069  | -2377.624848 | 612054.711966 | 5 5389140.924611     | -0.573269   | -0.607092  | 0.834984  |     |
| $\square$ | 13                                                      | 2400.335406  | -2363.181153 | 612771.469650 | 5389143.041282       | 1.44149     | -0.609675  | 1.56512   |     |
| $\square$ | 14                                                      | 2668.481022  | -2308.972460 | 613034.995177 | 5389192.253880       | -1.02773    | 0.238628   | 1.05507   |     |
|           | 15                                                      | 3476.477705  | -2325.122577 | 613833.773858 | 5389163.943407       | -0.173805   | 0.776824   | 0.79603   |     |
|           | 16                                                      | 4176.553858  | -1989.861932 | 614538.88985  | 5389479.327371       | 0.173198    | -0.533729  | 0.561128  |     |
|           | 17                                                      | 3731.654097  | -1191.310708 | 614136.193213 | 5390284.108798       | 0.0962358   | 0.518638   | 0.527491  |     |
| $\square$ | 18                                                      | 2868.413559  | -1422.758919 | 613255.234784 | 4 5390063.975025     | -0.248882   | -0.0837325 | 0.26259   |     |
|           | 19                                                      | 1790.964325  | -558.112488  | 612171.165050 | 5390967.053953       | 0.714762    | -0.100372  | 0.721775  |     |
| $\square$ | 20                                                      | 1919.306629  | -450.016083  | 612302.642456 | 5 5391079.031359     | -0.0336339  | 0.118719   | 0.123392  |     |
|           | 21                                                      | 3566.792694  | -512.648987  | 613998.943556 | 5 5390986.801814     | -0.594559   | 0.313032   | 0.67193   |     |
| $\square$ | 22                                                      | 2018.949951  | -303.651184  | 612405.265778 | 5391232.664556       | -0.547497   | 0.13608    | 0.564155  |     |
| $\sim$    | 23                                                      | 3714.994385  | -363.570892  | 614158.670370 | 5391141.264655       | 0.112784    | -0.0288348 | 0.116412  |     |
|           | 24                                                      | 3476.384583  | -1942.557129 | 613847.11433  | 5 5389537.638814     | -0.00419294 | -0.0464    | 0.0465891 |     |
|           | uto Adjust                                              |              | Transform    | ation:        | Brd Order Polynomial |             | ~          |           |     |
| D         | Degrees Minutes Seconds Forward Residual Unit : Unknown |              |              |               |                      |             |            |           |     |

RMS para la imagen satelital del año 2012, dividida en dos segmentos con 21 puntos de control cada uno.

| Link         | ink 🗆 🗆                        |                |              |               |                     |            |            |          |  |  |  |
|--------------|--------------------------------|----------------|--------------|---------------|---------------------|------------|------------|----------|--|--|--|
| 1            | <b>H</b> + <b>A</b> + <b>X</b> | # <sup>#</sup> | Total        | RMS Error:    | Forward:0.92866     | 5          |            |          |  |  |  |
|              | Link                           | X Source       | Y Source     | Х Мар         | Ү Мар               | Residual_x | Residual_y | Residual |  |  |  |
| $\square$    | 1                              | 3417.477243    | -1915.573488 | 614601.865197 | 5391743.613349      | 0.383422   | -0.291867  | 0.48187  |  |  |  |
| $\checkmark$ | 2                              | 4716.857500    | -1718.792781 | 615907.470803 | 5391917.577239      | -0.039213  | -0.0925319 | 0.100498 |  |  |  |
|              | 3                              | 4449.396913    | -1990.866045 | 615623.307734 | 5391653.357179      | -0.898773  | 0.920775   | 1.28671  |  |  |  |
| $\checkmark$ | 4                              | 4384.527652    | -1961.728061 | 615562.188862 | 5391681.535360      | 0.931566   | -0.864154  | 1.27066  |  |  |  |
| $\square$    | 5                              | 2991.010464    | -2544.112871 | 614158.042304 | 5391140.725945      | -0.0199848 | -1.07491   | 1.0751   |  |  |  |
| $\square$    | 6                              | 3141.320427    | -2338.869939 | 614313.220739 | 5391335.988836      | 0.28456    | 0.413243   | 0.501741 |  |  |  |
| $\square$    | 7                              | 3057.646048    | -2323.275249 | 614230.670574 | 5391352.657619      | -0.417532  | 0.962647   | 1.0493   |  |  |  |
| $\checkmark$ | 8                              | 1768.232288    | -2468.295269 | 612957.889903 | 5391230.419875      | -0.0968127 | 0.45577    | 0.465939 |  |  |  |
| $\checkmark$ | 9                              | 1190.335315    | -1997.364977 | 612382.420002 | 5391697.145808      | 0.733632   | -0.318701  | 0.799867 |  |  |  |
| $\checkmark$ | 10                             | 1299.582448    | -2465.569839 | 612494.735852 | 5391239.944894      | 0.276358   | -0.0409426 | 0.279375 |  |  |  |
|              | 11                             | 924.772878     | -2443.240599 | 612121.408022 | 5391268.387659      | -0.347301  | -0.0223782 | 0.348021 |  |  |  |
| $\square$    | 12                             | 1186.442572    | -1480.072814 | 612373.159567 | 5392211.099961      | -0.910426  | -0.0925606 | 0.915119 |  |  |  |
| $\square$    | 13                             | 1438.661191    | -1285.468194 | 612629.673622 | 5392403.452429      | 0.797151   | 0.848409   | 1.16415  |  |  |  |
| $\checkmark$ | 14                             | 1437.862729    | -564.925605  | 612627.821535 | 5393139.127859      | -0.790434  | 0.610329   | 0.998643 |  |  |  |
| $\square$    | 15                             | 1433.876627    | -640.918067  | 612624.646529 | 5393059.752700      | 0.286086   | -0.508554  | 0.5835   |  |  |  |
| $\checkmark$ | 16                             | 1735.371344    | -662.270074  | 612932.622145 | 5393035.146401      | 1.03484    | -0.506721  | 1.15224  |  |  |  |
| $\square$    | 17                             | 2105.293695    | -306.539452  | 613310.447900 | 5393404.240889      | -0.161641  | -0.124523  | 0.204043 |  |  |  |
| $\checkmark$ | 18                             | 2401.748291    | -930.804932  | 613605.723491 | 5392754.687507      | 0.408885   | 1.63628    | 1.6866   |  |  |  |
| $\square$    | 19                             | 2309.202026    | -1081.154175 | 613509.150381 | 5392597.921568      | -0.924174  | -1.34581   | 1.63258  |  |  |  |
| $\checkmark$ | 20                             | 2141.480103    | -1579.061279 | 613335.530450 | 5392095.900147      | -0.431169  | -0.648731  | 0.778947 |  |  |  |
|              | 21                             | 2310.460693    | -1610.459595 | 613504.864122 | 5392062.827164      | -0.0990371 | 0.0849335  | 0.130469 |  |  |  |
|              | uto Adjust                     |                | Transform    | ation: 2-     | d Orden Delvereniel |            |            |          |  |  |  |

Forward Residual Unit : Unknown

Degrees Minutes Seconds

| Link         |                               |                 |              |                     |                    |            |            |          | □ × |
|--------------|-------------------------------|-----------------|--------------|---------------------|--------------------|------------|------------|----------|-----|
| 🖻 🖥          | + <sup>±</sup> + <sup>±</sup> | -# <sup>#</sup> | Total        | RMS Error:          | Forward:0.885693   | 3          |            |          |     |
|              | Link                          | X Source        | Y Source     | Х Мар               | Ү Мар              | Residual_x | Residual_y | Residual |     |
|              | 1                             | 2104.720225     | -292.574187  | 612494.880737       | 5391241.002581     | 0.483779   | 0.793983   | 0.929759 |     |
| $\checkmark$ | 2                             | 3571.970035     | -511.517333  | 613999.039995       | 5390985.546862     | -0.492404  | -0.427654  | 0.652188 |     |
|              | 3                             | 2870.552025     | -1421.725349 | 613255.823926       | 5390062.546057     | -0.287627  | -0.565531  | 0.634471 |     |
| $\checkmark$ | 4                             | 2494.026150     | -2100.546489 | 612864.239809       | 5389398.175979     | 0.317788   | 1.37794    | 1.41411  |     |
|              | 5                             | 2163.276710     | -2567.374422 | 612532, 187062      | 5388949.706332     | -0.162293  | -0.671502  | 0.690836 |     |
|              | 6                             | 1449.139471     | -2268.561660 | 611825.880441       | 5389248.421513     | -0.30886   | -0.917388  | 0.967985 |     |
|              | 7                             | 809.602132      | -2481.305214 | 611197.493767       | 5389054.216957     | -1.02136   | 0.449941   | 1.11607  |     |
|              | 8                             | 766.780071      | -2329.444498 | 611152.249927       | 5389200.267250     | 1.20852    | -0.605989  | 1.35194  |     |
|              | 9                             | 878.266653      | -2314.266193 | 611261.258478       | 5389214.554778     | 0.169232   | 0.723301   | 0.742835 |     |
|              | 10                            | 718.848912      | -2467.992573 | 611108.858173       | 5389068.504486     | 0.376296   | 0.528908   | 0.649109 |     |
| $\square$    | 11                            | 569.293451      | -2421.317425 | 610958.574539       | 5389114.762565     | -0.339764  | -0.482712  | 0.590297 |     |
| $\checkmark$ | 12                            | 1254.504425     | -1252.253895 | 611618.711276       | 5390259.087770     | -0.44151   | 0.0282583  | 0.442413 |     |
| $\checkmark$ | 13                            | 4365.702547     | -1197.327647 | 614772.524459       | 5390266.390285     | 0.543135   | 0.669059   | 0.861763 |     |
| $\checkmark$ | 14                            | 4066.425246     | -1861.979158 | 614436.899829       | 5389604.533753     | 0.487914   | -1.19709   | 1.29271  |     |
| $\checkmark$ | 15                            | 3972.861103     | -1914.154780 | 614340.326720       | 5389556.908657     | -0.340706  | 1.02409    | 1.07928  |     |
| $\checkmark$ | 16                            | 4175.507584     | -1987.795303 | 614537.441697       | 5389479.517877     | -0.805564  | -0.55404   | 0.977698 |     |
| $\checkmark$ | 17                            | 3591.320826     | -2567.192623 | 613935.116534       | 5388928.389692     | 0.595645   | 0.69348    | 0.914171 |     |
| $\checkmark$ | 18                            | 3483.920226     | -2593.481734 | 613827.960070       | 5388903.915685     | -0.200908  | -0.362732  | 0.414654 |     |
| $\checkmark$ | 19                            | 2567.267761     | -1141.288544 | 612956.438078       | 5390351.331448     | 0.413201   | -0.0132068 | 0.413412 |     |
| $\checkmark$ | 20                            | 1733.809875     | -213.825928  | 612109.108258       | 5391329.497988     | -0.194512  | -0.491112  | 0.52823  |     |
|              |                               |                 |              |                     |                    |            |            |          |     |
| 🗹 Aut        | Auto Adjust Transformation:   |                 |              |                     | d Order Polynomial |            | ~          |          |     |
| Deg          | rees Minute                   | s Seconds       | Forward R    | esidual Unit : Unkn | own                |            |            |          |     |

RMS para la imagen satelital del año 2014, dividida en dos segmentos, el primero con 27 y el segundo con 25 puntos de control.

| Link         | Link 🗆 🗆 🗸                                              |             |               |               |                    |            |             |          |  |  |  |
|--------------|---------------------------------------------------------|-------------|---------------|---------------|--------------------|------------|-------------|----------|--|--|--|
| 1            | +a, +*                                                  | ŧ           | Total         | RMS Error:    | Forward:0.90913    | 3          |             |          |  |  |  |
|              | Link                                                    | X Source    | Y Source      | Х Мар         | Ү Мар              | Residual_x | Residual_y  | Residual |  |  |  |
|              | 1                                                       | 1433.298661 | -645.182769   | 612622.482711 | 5393061.510268     | -0.681734  | 0.435542    | 0.808986 |  |  |  |
| $\checkmark$ | 2                                                       | 3128.752052 | -1280.184039  | 614334.869469 | 5392383.117245     | 0.482539   | -1.56311    | 1.63589  |  |  |  |
|              | 3                                                       | 3611.205927 | -1666.670068  | 614806.291766 | 5391989.681041     | -0.493937  | 0.409906    | 0.64187  |  |  |  |
| $\checkmark$ | 4                                                       | 4280.913276 | -2352.079322  | 615436.673843 | 5391308.509887     | 0.546821   | -0.00346071 | 0.546832 |  |  |  |
| $\square$    | 5                                                       | 4562.148165 | -2004.622898  | 615734.992148 | 5391640.562635     | -0.697707  | -0.272538   | 0.749047 |  |  |  |
| $\checkmark$ | 6                                                       | 4577.092981 | -1614.639901  | 615777.325566 | 5392026.193614     | 0.902417   | -0.132304   | 0.912064 |  |  |  |
| $\square$    | 7                                                       | 4543.997738 | -1663.456434  | 615739.622365 | 5391978.568519     | -0.543058  | 0.458329    | 0.710617 |  |  |  |
| $\checkmark$ | 8                                                       | 913.205111  | -2382.800243  | 612109.531772 | 5391329.345866     | -0.326748  | -1.03368    | 1.08409  |  |  |  |
| $\square$    | 9                                                       | 922.957161  | -2446.320026  | 612120.512002 | 5391269.616060     | 0.359588   | 0.863319    | 0.935213 |  |  |  |
| $\checkmark$ | 10                                                      | 1037.659765 | -1844. 185278 | 612228.462218 | 5391855.404731     | -0.134446  | 0.751667    | 0.763596 |  |  |  |
| $\checkmark$ | 11                                                      | 1156.742442 | -1382.185775  | 612344.879118 | 5392312.341062     | 0.272743   | -0.266275   | 0.38117  |  |  |  |
| $\checkmark$ | 12                                                      | 1579.484078 | -933.037611   | 612770.065385 | 5392760.016957     | -0.500638  | -1.53721    | 1.61668  |  |  |  |
| $\checkmark$ | 13                                                      | 2104.923484 | -309.088615   | 613310.345632 | 5393405.072414     | -1.33635   | -0.262589   | 1.3619   |  |  |  |
| $\checkmark$ | 14                                                      | 2002.895197 | -261.757465   | 613208.216261 | 5393456.930851     | 0.329193   | 0.245983    | 0.410945 |  |  |  |
| $\checkmark$ | 15                                                      | 1479.693944 | -584. 196822  | 612671.243312 | 5393123.489038     | 0.659913   | -0.397327   | 0.770294 |  |  |  |
| $\checkmark$ | 16                                                      | 1408.832319 | -580.530376   | 612598.482750 | 5393129.442175     | -0.0615639 | 0.712205    | 0.714861 |  |  |  |
| $\checkmark$ | 17                                                      | 2310.191402 | -1620.361965  | 613504.023347 | 5392055.605702     | 0.862008   | 0.588113    | 1.04352  |  |  |  |
| $\checkmark$ | 18                                                      | 2406.049564 | -1746.706019  | 613596.958429 | 5391928.142426     | -0.673604  | 0.119999    | 0.684209 |  |  |  |
| $\checkmark$ | 19                                                      | 2180.827872 | -1879.537299  | 613370.474642 | 5391800.613005     | -0.353027  | 0.238988    | 0.426314 |  |  |  |
| $\checkmark$ | 20                                                      | 2023.470873 | -2240.817939  | 613211.900714 | 5391448.848759     | 0.887893   | -0.908136   | 1.27007  |  |  |  |
| $\square$    | 21                                                      | 2292.414429 | -2630.903927  | 613471.854359 | 5391070.626128     | -0.416348  | 0.225984    | 0.473724 |  |  |  |
| $\checkmark$ | 22                                                      | 2307.249685 | -2562.019965  | 613487.729391 | 5391136.110634     | -0.211473  | 0.0869206   | 0.22864  |  |  |  |
| $\square$    | 23                                                      | 2402.524478 | -931.060829   | 613605.707335 | 5392753.247202     | -0.0224734 | 1.65096     | 1.65111  |  |  |  |
| $\checkmark$ | 24                                                      | 1892.977234 | -363.386869   | 613095.093248 | 5393349.888128     | 1.14327    | -0.343879   | 1.19386  |  |  |  |
| $\checkmark$ | 25                                                      | 2987.366211 | -2546.865789  | 614157.561595 | 5391140.984389     | 0.123961   | 0.0224222   | 0.125973 |  |  |  |
| $\sim$       | 26                                                      | 1300.498962 | -2468.593114  | 612494.235780 | 5391240.860908     | 0.094737   | -0.0810324  | 0.124665 |  |  |  |
|              | 27                                                      | 1336.043152 | -2052.236450  | 612527.461343 | 5391644.794032     | -0.211975  | -0.00879806 | 0.212157 |  |  |  |
| Auto         | Adjust                                                  |             | Transform     | ation: 3rd    | d Order Polynomial |            | ~           |          |  |  |  |
| Degr         | Degrees Minutes Seconds Forward Residual Unit : Unknown |             |               |               |                    |            |             |          |  |  |  |

| Link         | k                                                       |             |              |               |                    |              |             |          | □ × |
|--------------|---------------------------------------------------------|-------------|--------------|---------------|--------------------|--------------|-------------|----------|-----|
| <b>6</b>     | ₩+ ⊕+ ₩                                                 |             | Total        | RMS Error:    | Forward:0.78593    | 1            |             |          |     |
|              | Link                                                    | X Source    | Y Source     | Х Мар         | Ү Мар              | Residual_x   | Residual_y  | Residual |     |
|              | 1                                                       | 2105.266889 | -294.965668  | 612495.098712 | 5391240.663803     | -0.175336    | 0.261404    | 0.314761 |     |
|              | 2                                                       | 3571.833191 | -513.445792  | 613999.698943 | 5390985.803397     | -0.561362    | -0.29149    | 0.632529 |     |
|              | 3                                                       | 2870.485468 | -1422.674929 | 613255.424538 | 5390063.794782     | -0.185513    | -0.00890831 | 0.185727 |     |
|              | 4                                                       | 845.857277  | -2345.428047 | 611231.754866 | 5389188.948241     | 0.251427     | 1.15465     | 1.1817   |     |
|              | 5                                                       | 719.606839  | -2471.779779 | 611110.046289 | 5389068.298000     | 0.592929     | -0.693509   | 0.912425 |     |
| $\square$    | 6                                                       | 831.831129  | -2143.930479 | 611212.969412 | 5389383.020504     | -0.685817    | -0.0966482  | 0.692594 |     |
| $\checkmark$ | 7                                                       | 1434.966996 | -1416.950076 | 611808.018518 | 5390092.502131     | 0.543793     | 0.360213    | 0.652276 |     |
| $\square$    | 8                                                       | 765.350701  | -1763.134859 | 611139.282806 | 5389757.803545     | -0.18757     | -0.574244   | 0.604102 |     |
|              | 9                                                       | 2463.156906 | -1313.621206 | 612847.171638 | 5390179.285638     | 0.596572     | -0.646034   | 0.879351 |     |
| $\square$    | 10                                                      | 2116.212039 | -1193.195859 | 612496.862604 | 5390307.344228     | 0.103312     | -0.152613   | 0.184293 |     |
|              | 11                                                      | 4364.979331 | -1199.931208 | 614772.812990 | 5390266.730605     | 0.519431     | 0.419957    | 0.667961 |     |
| $\square$    | 12                                                      | 3973.088182 | -1916.972829 | 614341.144418 | 5389556.058350     | -0.139746    | 0.28086     | 0.313706 |     |
| $\square$    | 13                                                      | 4321.145871 | -1774.323738 | 614695.025334 | 5389690.996120     | -0.031455    | -0.289103   | 0.290809 |     |
|              | 14                                                      | 4133.395771 | -2055.756460 | 614492.618679 | 5389416.490363     | -0.546561    | -0.712157   | 0.897717 |     |
| $\square$    | 15                                                      | 3591.657193 | -2569.888526 | 613935.934233 | 5388928.950499     | 0.82764      | 0.765161    | 1.12715  |     |
|              | 16                                                      | 3694.032938 | -2670.017738 | 614030.655255 | 5388831.054470     | -0.292674    | -0.125855   | 0.318587 |     |
| $\square$    | 17                                                      | 2899.239891 | -2004.871865 | 613270.042797 | 5389485.767237     | -0.0294088   | 0.648303    | 0.648969 |     |
|              | 18                                                      | 2857.529954 | -1913.880564 | 613230.884385 | 5389575.196583     | 0.133906     | 0.0980879   | 0.165988 |     |
| $\square$    | 19                                                      | 1422.129796 | -2356.907977 | 611800.852705 | 5389167.208267     | -0.56869     | 1.0748      | 1.21597  |     |
| $\checkmark$ | 20                                                      | 1678.901010 | -2377.594457 | 612055.382381 | 5389141.279048     | 0.0522583    | -0.558656   | 0.561095 |     |
| $\checkmark$ | 21                                                      | 2155.076196 | -2588.440376 | 612523.607623 | 5388931.375851     | -0.24616     | -0.792312   | 0.82967  |     |
| $\square$    | 22                                                      | 2402.764627 | -2364.207820 | 612770.728951 | 5389142.937107     | -0.000948119 | -0.288979   | 0.28898  |     |
| $\square$    | 23                                                      | 2791.748259 | -86.961053   | 613212.187125 | 5391449.050053     | 1.39671      | -0.550261   | 1.5012   |     |
|              | 24                                                      | 2697.274190 | -239.760866  | 613107.015040 | 5391288.976816     | -1.49542     | 0.264924    | 1.5187   |     |
|              | 25                                                      | 3071.627433 | -357.161619  | 613491.719976 | 5391158.801556     | 0.128679     | 0.452415    | 0.470359 |     |
| A            | uto Adjust                                              |             | Transform    | ation: 3r     | d Order Polynomial |              | ~           |          |     |
| D            | Degrees Minutes Seconds Forward Residual Unit : Unknown |             |              |               |                    |              |             |          |     |

RMS para la imagen satelital del 29 de enero del 2016, dividida en dos segmentos con 20 puntos de control cada uno.

| Lin                                                     | Link 🗆 🗆 🗸 |             |              |               |                    |                  |            |          |  |  |  |
|---------------------------------------------------------|------------|-------------|--------------|---------------|--------------------|------------------|------------|----------|--|--|--|
| e3                                                      |            |             | Total        | RMS Error:    | Forward:0.9754     | Forward:0.975499 |            |          |  |  |  |
|                                                         | Link       | X Source    | Y Source     | Х Мар         | Y Map              | Residual_x       | Residual_y | Residual |  |  |  |
|                                                         | 1          | 3622.520261 | -1368.864958 | 614827.329081 | 5392280.634792     | 0.585492         | 0.223027   | 0.626531 |  |  |  |
| $\square$                                               | 2          | 3614.094255 | -1658.523908 | 614806.162372 | 5391989.592543     | -1.35445         | -1.08249   | 1.73388  |  |  |  |
| $\square$                                               | 3          | 2844.809346 | -2679.082905 | 614010.007481 | 5391009.088846     | 0.0779526        | -0.197046  | 0.211905 |  |  |  |
| $\checkmark$                                            | 4          | 1301.860879 | -2461.881138 | 612494.404970 | 5391241.018650     | 0.12529          | 0.927262   | 0.935688 |  |  |  |
|                                                         | 5          | 924.612859  | -2438.356282 | 612122.135476 | 5391268.535372     | -0.0999454       | -0.814711  | 0.820819 |  |  |  |
| $\checkmark$                                            | 6          | 1157.865639 | -1376.860382 | 612344.915088 | 5392312.371626     | 0.63716          | 0.0623876  | 0.640207 |  |  |  |
|                                                         | 7          | 2234.579189 | -2102.256835 | 613420.316197 | 5391575.020499     | 0.172887         | 0.150479   | 0.229202 |  |  |  |
| $\checkmark$                                            | 8          | 2277.817251 | -938.068185  | 613477.334019 | 5392740.380121     | 0.204201         | 0.446839   | 0.491287 |  |  |  |
|                                                         | 9          | 2107.358052 | -302.391414  | 613310.381602 | 5393405.014784     | -0.391405        | -1.38465   | 1.43891  |  |  |  |
| $\checkmark$                                            | 10         | 1894.836291 | -360.162689  | 613092.364500 | 5393349.981340     | 0.612152         | 1.62814    | 1.73941  |  |  |  |
|                                                         | 11         | 1481.642382 | -257.818838  | 612667.707400 | 5393463.487817     | 0.0415795        | 0.19273    | 0.197165 |  |  |  |
| $\checkmark$                                            | 12         | 1652.198805 | -795.825540  | 612840.745246 | 5392895.161681     | -0.942349        | -1.40362   | 1.69061  |  |  |  |
|                                                         | 13         | 3127.998272 | -1278.034928 | 614331.146144 | 5392380.810652     | -0.155305        | 0.705124   | 0.722025 |  |  |  |
| $\checkmark$                                            | 14         | 4580.093647 | -1605.747434 | 615776.170909 | 5392025.209941     | -0.161028        | -0.12436   | 0.203459 |  |  |  |
|                                                         | 15         | 4259.206898 | -1994.615293 | 615436.445229 | 5391648.177937     | 0.668752         | 0.337772   | 0.749212 |  |  |  |
| $\checkmark$                                            | 16         | 4154.670351 | -2629.572643 | 615298.332453 | 5391036.989214     | -0.162072        | 0.0741639  | 0.178235 |  |  |  |
| $\square$                                               | 17         | 1873.899617 | -1700.268348 | 613063.061837 | 5391975.203591     | -0.950992        | -1.2178    | 1.54513  |  |  |  |
| $\square$                                               | 18         | 1064.134254 | -1745.951383 | 612254.096677 | 5391945.801709     | -0.12294         | 0.714663   | 0.725161 |  |  |  |
| $\square$                                               | 19         | 2052.148376 | -1235.132324 | 613246.021578 | 5392440.573532     | 0.259508         | 0.34747    | 0.433681 |  |  |  |
| $\square$                                               | 20         | 2596.924316 | -1503.441833 | 613792.387254 | 5392161.834433     | 0.955516         | 0.414628   | 1.0416   |  |  |  |
|                                                         |            |             |              |               |                    |                  |            |          |  |  |  |
|                                                         | uto Adjust |             | Transform    | ation: 3r     | d Order Polynomial |                  | $\sim$     |          |  |  |  |
| Degrees Minutes Seconds Forward Residual Unit : Unknown |            |             |              |               |                    |                  |            |          |  |  |  |

| Link                    |        |             |                      |               |                    |            |            |           | □ × |
|-------------------------|--------|-------------|----------------------|---------------|--------------------|------------|------------|-----------|-----|
| 🖻 🖬                     | +ª+ +* |             | Total                | RMS Error:    | Forward:0.91864    | 1          |            |           |     |
|                         | Link   | X Source    | Y Source             | Х Мар         | Ү Мар              | Residual_x | Residual_y | Residual  |     |
|                         | 1      | 4178.876141 | -1983.773504         | 614539.448383 | 5389480.216902     | -0.883554  | 0.842674   | 1.22097   |     |
| $\square$               | 2      | 723.141582  | -2461.535133         | 611109.118606 | 5389068.921288     | 0.0134007  | -0.0276867 | 0.0307593 |     |
|                         | 3      | 799.583020  | -2156.768011         | 611180.027081 | 5389363.138543     | 0.0795433  | -1.70557   | 1.70742   |     |
| $\checkmark$            | 4      | 479.355652  | -2336.887049         | 610865.092909 | 5389194.413414     | -0.145333  | 0.336706   | 0.366732  |     |
|                         | 5      | 765.917477  | -1760.077810         | 611138.408039 | 5389757.712457     | 0.10296    | 0.947362   | 0.95294   |     |
|                         | 6      | 1254.170363 | -1250.712227         | 611620.744421 | 5390259.628044     | -0.950555  | 0.643068   | 1.14765   |     |
| $\square$               | 7      | 1567.227427 | -561.508065          | 611934.805465 | 5390958.394025     | 0.488324   | -0.83746   | 0.969433  |     |
|                         | 8      | 2165.605759 | -2563.435682         | 612531.706659 | 5388949.893828     | -0.84086   | 0.861003   | 1.20348   |     |
|                         | 9      | 1449.442233 | -2266.067276         | 611827.340320 | 5389248.013695     | 0.589229   | 0.531554   | 0.793562  |     |
| $\square$               | 10     | 1793.122292 | -2049.630492         | 612168.653503 | 5389452.933896     | 0.447995   | -0.743384  | 0.86794   |     |
|                         | 11     | 4365.883102 | -1192.112400         | 614772.396835 | 5390265.126979     | 0.0676363  | 0.21046    | 0.221061  |     |
|                         | 12     | 4635.696487 | -743.198183          | 615075.874525 | 5390720.925599     | -0.0902042 | -0.358285  | 0.369466  |     |
|                         | 13     | 3893.604636 | -2443.885063         | 614236.438124 | 5389038.833693     | 0.6475     | -0.763544  | 1.00113   |     |
|                         | 14     | 2762.834266 | -2257.567027         | 613127.831740 | 5389235.154919     | 0.214697   | -0.169218  | 0.273367  |     |
|                         | 15     | 2621.030496 | -1395.765227         | 613004.006493 | 5390089.760795     | -0.278576  | -0.210979  | 0.349452  |     |
|                         | 16     | 2607.999970 | -838.524574          | 613001.889822 | 5390658.616099     | 0.204692   | 0.685644   | 0.715546  |     |
|                         | 17     | 3734.528810 | -1184.904554         | 614136.425424 | 5390284.163788     | 1.22648    | 0.283528   | 1.25883   |     |
|                         | 18     | 3035.812536 | -1194.964956         | 613426.987894 | 5390284.935491     | -1.14354   | -1.06956   | 1.56577   |     |
| $\checkmark$            | 19     | 2794.113694 | -78.756565           | 613211.881214 | 5391449.898237     | -0.210618  | 0.309742   | 0.374567  |     |
|                         | 20     | 1920.365906 | -1279.669739         | 612297.871771 | 5390219.165835     | 0.460784   | 0.23394    | 0.516769  |     |
|                         |        |             |                      |               |                    |            |            |           |     |
| Auto                    | Adjust |             | Transform            | ation: 3r     | d Order Polynomial |            | $\sim$     |           |     |
| Degrees Minutes Seconds |        | Forward Re  | esidual Unit : Unkno | own           |                    |            |            |           |     |

RMS para la imagen satelital del 18 de octubre del 2016, dividida en dos segmentos, el primero con 21 y el segundo con 20 puntos de control.

| Link                       | Link 🗆 🗆 🗸                                       |             |              |               |                 |                  |             |          |  |  |
|----------------------------|--------------------------------------------------|-------------|--------------|---------------|-----------------|------------------|-------------|----------|--|--|
| 📸 🔚 🚓 🕂 🕂 Total RMS Error: |                                                  |             |              |               | Forward:0.82302 | Forward:0.823027 |             |          |  |  |
|                            | Link                                             | X Source    | Y Source     | Х Мар         | Ү Мар           | Residual_x       | Residual_y  | Residual |  |  |
|                            | 1                                                | 2105.238135 | -307.176645  | 613310.186075 | 5393403.937918  | 0.190614         | 0.271577    | 0.331795 |  |  |
| $\checkmark$               | 2                                                | 3127.854763 | -1282.035887 | 614332.802704 | 5392380.659830  | -0.633402        | 0.128088    | 0.646224 |  |  |
| $\checkmark$               | 3                                                | 2995.429485 | -2049.729043 | 614177.144710 | 5391618.735476  | 0.214118         | -0.947399   | 0.971294 |  |  |
| $\checkmark$               | 4                                                | 1210.976056 | -2584.477944 | 612408.666173 | 5391128.196995  | 0.253738         | 0.141893    | 0.290717 |  |  |
| $\checkmark$               | 5                                                | 1159.455722 | -1381.096908 | 612345.298338 | 5392313.135824  | -0.160708        | 0.384307    | 0.416555 |  |  |
| $\checkmark$               | 6                                                | 1262.629312 | -618.929633  | 612443.547146 | 5393090.516285  | -0.603037        | -0.344742   | 0.694622 |  |  |
| $\checkmark$               | 7                                                | 1746.001516 | -715.322341  | 612940.435640 | 5392982.301485  | 1.0291           | -0.00881763 | 1.02914  |  |  |
| $\checkmark$               | 8                                                | 4280.929787 | -2347.989958 | 615435.196879 | 5391308.649804  | -0.79851         | -0.396529   | 0.891546 |  |  |
| $\checkmark$               | 9                                                | 4563.863686 | -2001.590951 | 615735.499563 | 5391640.834844  | -0.834749        | -0.227567   | 0.865212 |  |  |
| $\checkmark$               | 10                                               | 4546.992984 | -1661.816727 | 615742.378743 | 5391977.429614  | 0.965124         | 1.01248     | 1.39878  |  |  |
| $\checkmark$               | 11                                               | 4578.577580 | -1611.260335 | 615776.245478 | 5392025.583877  | -0.123194        | -0.501346   | 0.51626  |  |  |
| $\checkmark$               | 12                                               | 3611.728413 | -1664.856221 | 614806.042912 | 5391989.838597  | 0.970299         | 0.360846    | 1.03522  |  |  |
| $\checkmark$               | 13                                               | 3608.768493 | -1286.829757 | 614818.346062 | 5392367.267477  | -0.38603         | -0.7503     | 0.843783 |  |  |
| $\checkmark$               | 14                                               | 2234.417440 | -1575.937290 | 613427.379087 | 5392100.368506  | 0.224449         | 0.84088     | 0.87032  |  |  |
| $\checkmark$               | 15                                               | 2025.050389 | -2238.861045 | 613210.684904 | 5391449.580399  | -0.846602        | -0.203746   | 0.870774 |  |  |
| $\checkmark$               | 16                                               | 2491.634071 | -932.890107  | 613696.857751 | 5392745.644449  | -0.884339        | -0.226476   | 0.912879 |  |  |
| $\checkmark$               | 17                                               | 1871.136103 | -1705.371159 | 613062.597316 | 5391976.327181  | 1.01026          | -0.170787   | 1.02459  |  |  |
| $\square$                  | 18                                               | 1589.216850 | -2087.893275 | 612779.095708 | 5391603.528519  | -0.251791        | -0.482884   | 0.544587 |  |  |
| $\checkmark$               | 19                                               | 4015.146362 | -2555.580872 | 615165.311417 | 5391113.585352  | 1.00077          | 0.121443    | 1.00812  |  |  |
| $\square$                  | 20                                               | 3329.478943 | -2082.945160 | 614507.423643 | 5391582.692540  | 0.0706436        | 0.605967    | 0.610071 |  |  |
|                            | 21                                               | 3079.927734 | -2447.610870 | 614249.092779 | 5391232.180658  | -0.406753        | 0.393106    | 0.565668 |  |  |
| 🖂 Au                       | Auto Adjust Transformation: 3rd Order Polynomial |             |              |               |                 |                  |             |          |  |  |

| Degrees Minutes Seconds |  |
|-------------------------|--|
|-------------------------|--|

Forward Residual Unit : Unknown

| Link                    |                            |             |              |                      |                    |                  |            |          | □ × |  |
|-------------------------|----------------------------|-------------|--------------|----------------------|--------------------|------------------|------------|----------|-----|--|
| 🖻 🖬                     | 🖆 🔚 🕂 👬 🕂 Total RMS Error: |             |              |                      | Forward:0.87793    | Forward:0.877933 |            |          |     |  |
|                         | Link                       | X Source    | Y Source     | Х Мар                | Ү Мар              | Residual_x       | Residual_y | Residual |     |  |
|                         | 1                          | 2018.432807 | -300.410094  | 612405.232413        | 5391233.360534     | 1.24648          | -0.299408  | 1.28193  |     |  |
| $\checkmark$            | 2                          | 3721.057523 | -362.642424  | 614158.128063        | 5391140.701061     | -1.45248         | -0.0402554 | 1.45304  |     |  |
| $\checkmark$            | 3                          | 3593.745074 | -2567.379094 | 613935.767375        | 5388928.537435     | 0.41496          | 0.0474497  | 0.417664 |     |  |
| $\checkmark$            | 4                          | 846.838462  | -2343.246734 | 611230.609048        | 5389188.411705     | 0.00923593       | 0.961024   | 0.961069 |     |  |
| $\checkmark$            | 5                          | 811.464602  | -2480.453382 | 611197.536066        | 5389055.458314     | -0.648228        | -0.388385  | 0.755673 |     |  |
| $\checkmark$            | 6                          | 569.493515  | -2423.353430 | 610958.087670        | 5389114.989683     | 0.920909         | -0.24012   | 0.951699 |     |  |
| $\checkmark$            | 7                          | 766.831581  | -1763.168233 | 611138.974837        | 5389756.870133     | -0.582386        | -0.332286  | 0.670513 |     |  |
| $\checkmark$            | 8                          | 1249.319870 | -1256.737099 | 611619.194548        | 5390256.404466     | 0.222588         | 0.0899314  | 0.240069 |     |  |
| $\checkmark$            | 9                          | 2011.039653 | -799.266155  | 612394.306202        | 5390711.585723     | 0.991749         | -0.133401  | 1.00068  |     |  |
| $\checkmark$            | 10                         | 2924.466701 | -1162.865497 | 613316.248671        | 5390325.293284     | -0.196951        | 0.115351   | 0.228245 |     |  |
| $\checkmark$            | 11                         | 4743.461021 | -291.130982  | 615220.855605        | 5391197.957008     | -0.125807        | -0.390072  | 0.409858 |     |  |
| $\checkmark$            | 12                         | 4079.739074 | -382.176814  | 614530.027140        | 5391115.142260     | 1.16525          | 0.770417   | 1.3969   |     |  |
| $\checkmark$            | 13                         | 4287.052695 | -763.748189  | 614721.056689        | 5390712.908643     | 0.40289          | 0.138497   | 0.426031 |     |  |
| $\checkmark$            | 14                         | 4177.435408 | -1988.490128 | 614539.353721        | 5389479.947843     | -0.368158        | 0.515662   | 0.633599 |     |  |
| $\checkmark$            | 15                         | 3973.576729 | -1913.905165 | 614340.518949        | 5389556.147996     | -0.304929        | -0.765138  | 0.823661 |     |  |
| $\checkmark$            | 16                         | 2803.034937 | -2081.759074 | 613171.852028        | 5389411.751353     | 0.707884         | 0.172089   | 0.728501 |     |  |
| $\checkmark$            | 17                         | 2164.024098 | -2568.738417 | 612531.648378        | 5388950.118659     | -0.564676        | -0.151406  | 0.584622 |     |  |
| $\checkmark$            | 18                         | 2075.488375 | -1472.394854 | 612453.860722        | 5390025.122892     | 0.152826         | 0.00341279 | 0.152864 |     |  |
| $\checkmark$            | 19                         | 2999.269825 | -597.845164  | 613407.950131        | 5390904.864235     | -0.437543        | -0.602692  | 0.74477  |     |  |
| $\checkmark$            | 20                         | 1776.838852 | -490.698004  | 612152.764287        | 5391037.949918     | -1.5536          | 0.529329   | 1.6413   |     |  |
|                         |                            |             |              |                      |                    |                  |            |          |     |  |
| Auto                    | o Adjust                   |             | Transform    | ation: 3rd           | d Order Polynomial |                  | $\sim$     |          |     |  |
| Degrees Minutes Seconds |                            |             | Forward Re   | esidual Unit : Unkno | wn                 |                  |            |          |     |  |

RMS para la imagen satelital del 20 de noviembre del 2016, dividida en dos segmentos, el primero con 20 y el segundo con 21 puntos de control.

| Link         |      |             |              |                 |                  |            |             |           | □ × |  |
|--------------|------|-------------|--------------|-----------------|------------------|------------|-------------|-----------|-----|--|
| 📸 🖬 🕂 👯 🕂    |      |             |              | Forward:0.84842 | Forward:0.848427 |            |             |           |     |  |
|              | Link | X Source    | Y Source     | Х Мар           | Ү Мар            | Residual_x | Residual_y  | Residual  |     |  |
|              | 1    | 1897.097466 | -359.166124  | 613092.373881   | 5393350.854038   | -0.370546  | -0.451058   | 0.583744  |     |  |
| $\square$    | 2    | 3608.148466 | -1285.860876 | 614817.976993   | 5392367.273756   | 0.440192   | 0.432892    | 0.617386  |     |  |
|              | 3    | 1101.592429 | -2636.089305 | 612300.593834   | 5391079.279513   | 0.0621662  | 0.000880568 | 0.0621724 |     |  |
|              | 4    | 1158.417785 | -1377.432321 | 612344.911631   | 5392311.843436   | -0.523773  | 0.384411    | 0.6497    |     |  |
|              | 5    | 1438.714551 | -327.178091  | 612622.063227   | 5393394.388310   | 0.307018   | 0.184986    | 0.35844   |     |  |
| $\checkmark$ | 6    | 1964.775841 | -2226.383688 | 613152.156995   | 5391459.486523   | 0.54486    | -0.361505   | 0.653879  |     |  |
|              | 7    | 2410.304552 | -1857.750771 | 613600.362058   | 5391815.395916   | 1.03634    | 0.285675    | 1.075     |     |  |
|              | 8    | 2490.910931 | -932.605373  | 613696.273708   | 5392746.466528   | -0.477633  | 0.766001    | 0.902713  |     |  |
| $\checkmark$ | 9    | 4566.847427 | -2346.717800 | 615718.488169   | 5391306.468856   | -0.305773  | 1.06894     | 1.11181   |     |  |
| $\square$    | 10   | 4279.995944 | -2347.139656 | 615435.383437   | 5391308.453235   | -0.447846  | -0.681658   | 0.815612  |     |  |
| $\square$    | 11   | 4578.058754 | -1611.765448 | 615776.035159   | 5392025.078627   | 0.0217522  | 0.394517    | 0.395117  |     |  |
| $\square$    | 12   | 4635.088500 | -1852.551823 | 615817.826181   | 5391785.365647   | 0.0686199  | -1.01853    | 1.02084   |     |  |
| $\checkmark$ | 13   | 3838.999177 | -1717.597365 | 615030.292314   | 5391933.135735   | -0.0865986 | 0.8846      | 0.888828  |     |  |
| $\square$    | 14   | 3050.834471 | -1700.227293 | 614242.449766   | 5391961.446208   | -0.599673  | -0.497352   | 0.779081  |     |  |
| $\checkmark$ | 15   | 3126.893571 | -1251.044125 | 614333.466615   | 5392409.254395   | 0.0972674  | -1.35623    | 1.35971   |     |  |
|              | 16   | 1822.618332 | -827.798233  | 613018.484818   | 5392865.926142   | 0.431317   | 0.811551    | 0.919049  |     |  |
| $\checkmark$ | 17   | 1526.194465 | -1090.640269 | 612716.859215   | 5392598.034981   | 0.0454642  | -1.12676    | 1.12768   |     |  |
| $\checkmark$ | 18   | 2603.293666 | -2612.935220 | 613776.914460   | 5391078.926735   | -0.655553  | 0.0982539   | 0.662875  |     |  |
| $\checkmark$ | 19   | 4015.297936 | -2554.578694 | 615165.913592   | 5391112.661177   | 1.00726    | -0.376896   | 1.07547   |     |  |
| $\checkmark$ | 20   | 2702.221661 | -2155.709625 | 613883.012589   | 5391518.929698   | -0.594869  | 0.557281    | 0.815127  |     |  |
|              |      |             |              |                 |                  |            |             |           |     |  |

 $\sim$ 

| 🗹 Auto Adjust           |
|-------------------------|
| Degrees Minutes Seconds |

3rd Order Polynomial Forward Residual Unit : Unknown

Transformation:

| Link                           |                                 |             |                |                     |                |            |            |          | □ × |
|--------------------------------|---------------------------------|-------------|----------------|---------------------|----------------|------------|------------|----------|-----|
| 📸 🔚 🖧 + 📩 + 📩 Total RMS Error: |                                 |             | Forward:0.8188 | Forward:0.818889    |                |            |            |          |     |
|                                | Link                            | X Source    | Y Source       | Х Мар               | Ү Мар          | Residual_x | Residual_y | Residual |     |
|                                | 1                               | 2017.320032 | -298.563804    | 612403.939079       | 5391233.957575 | 0.232575   | -0.0726371 | 0.243654 |     |
|                                | 2                               | 3718.594268 | -361.137887    | 614157.865504       | 5391140.427179 | 0.683936   | 0.293635   | 0.744305 |     |
|                                | 3                               | 2976.086914 | -1160.552384   | 613367.579965       | 5390324.450547 | -0.772268  | -0.0678289 | 0.775241 |     |
|                                | 4                               | 1231.211850 | -1253.908236   | 611601.681120       | 5390260.421253 | -0.368566  | 0.439269   | 0.573409 |     |
| $\square$                      | 5                               | 829.606095  | -2140.840165   | 611211.916018       | 5389383.458040 | -0.598967  | -0.448798  | 0.748453 |     |
|                                | 6                               | 845.114450  | -2340.800907   | 611230.966056       | 5389189.253485 | -0.219034  | 1.23388    | 1.25317  |     |
|                                | 7                               | 568.039641  | -2421.343476   | 610958.444678       | 5389115.170004 | 0.534489   | -0.661526  | 0.850468 |     |
|                                | 8                               | 2759.754379 | -2264.216136   | 613125.099879       | 5389230.197838 | 0.111407   | -0.692282  | 0.701189 |     |
|                                | 9                               | 3592.235667 | -2564.210996   | 613935.652542       | 5388928.638381 | 0.763931   | -0.255807  | 0.805623 |     |
| $\checkmark$                   | 10                              | 3950.721789 | -2567.564399   | 614285.961576       | 5388920.171697 | -0.859547  | 0.159793   | 0.874274 |     |
|                                | 11                              | 4176.100039 | -1987.213943   | 614539.962084       | 5389479.501983 | 0.953498   | -0.139553  | 0.963657 |     |
|                                | 12                              | 3972.708714 | -1913.584262   | 614339.936684       | 5389556.231303 | -0.304034  | 0.627624   | 0.697387 |     |
|                                | 13                              | 4365.727233 | -1195.228257   | 614772.663591       | 5390265.845222 | -0.492658  | -0.425981  | 0.651285 |     |
|                                | 14                              | 2889.477901 | -1585.769366   | 613270.241767       | 5389898.435251 | 0.0709928  | 0.950952   | 0.953598 |     |
|                                | 15                              | 1656.589224 | -1602.936981   | 612034.370545       | 5389899.467128 | 0.678277   | -0.595832  | 0.902815 |     |
|                                | 16                              | 2217.562962 | -1109.539979   | 612600.844594       | 5390387.624354 | -0.400603  | -0.774386  | 0.871869 |     |
|                                | 17                              | 2811.224493 | -111.181449    | 613228.349322       | 5391419.413223 | -0.728983  | -0.273882  | 0.778734 |     |
|                                | 18                              | 2579.044095 | -1813.684566   | 612954.901900       | 5389674.791331 | -0.0522627 | -0.74385   | 0.745684 |     |
|                                | 19                              | 2318.765468 | -590.452971    | 612711.308357       | 5390922.568827 | 0.659633   | 0.528999   | 0.845551 |     |
| $\checkmark$                   | 20                              | 2246.055165 | -2230.467692   | 612617.182648       | 5389271.697817 | -0.691714  | 0.598823   | 0.914909 |     |
|                                | 21                              | 2008.738903 | -1735.611947   | 612387.126979       | 5389762.104006 | 0.799895   | 0.31939    | 0.861303 |     |
|                                |                                 |             |                |                     |                |            |            |          |     |
| 🗹 Auto                         | Auto Adjust Transformation: 3rd |             |                |                     |                |            | $\sim$     |          |     |
| Degre                          | ees Minute                      | as Seconds  | Forward Re     | esidual Unit : Unkn | own            |            |            |          |     |