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We use unsupervised machine learning techniques to analyze continental-scale
crustal motions in areas affected by the seismic cycle of large subduction
earthquakes along the Chilean Trench. Specifically, we use the agglomerative
clustering algorithm as an exploratory tool to investigate spatial patterns in
GNSS regional velocities without the complexity of modeling a physical source.
We present a continental-scale velocity field including all available GNSS data
for two-time windows (pre-2014, 2018–2021) that represents two periods with
different deformation patterns of the seismic cycle. We test two different pre-
processing methodologies for the design of machine learning features from the
GNSS-derived velocities. The first method uses the direction and magnitude
of the secular rates as input features to the clustering algorithm. These results
show a clustering spatially related to seismic cycle deformation, separating
latitudinal segments with different velocities in the fore-arc and back-arc, as well
as regions affected by postseismic relaxation. Thus, highlighting the effectiveness
of this method for mapping first-order patterns of active deformation in a
subduction zone, that are particularly related to variations on interplate coupling
and postseismic transient deformation. In amore sophisticated approach, we use
surface strain and rotational rates from GNSS velocities as features in the second
methodology. Here, we develop a novel methodology to estimate strain and
rotation rates accounting for the spatial heterogeneity of the GNSS-network. We
determine the spatial scale at which these features are estimated by least squares
inversions, by using a Bayesian model class selection method. The distribution
of stations allows to identify heterogeneities in strain and rotation rates at
spatial scales larger than 50 km, being particularly notorious the main features
of regional deformation at scales > 100 km. Interestingly, the results show a
spatial correlation between seismic segmentation in the fore-arc and geologic
and structural domains in the arc and back-arc. Our results demonstrate the
ability of the combination of inverse andmachine learningmethods to efficiently
identify active deformation patterns and their relationship to the subduction
seismic cycle and regional-scale geological structures. Furthermore, our analysis
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suggests that Andean geological structures influence the observed deformation
field.
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1 Introduction

The global increase in the number of GNSS stations has
made it possible to capture unprecedented high spatial and
temporal resolution of crustal deformation measurements in
subduction zones, enhancing our understanding of earthquake
cycle processes and tectonic signals (e.g., Wallace et al., 2004;
Sakaue et al., 2019; Bedford et al., 2020). Essentially, physical
models of varying complexity (e.g., forward and inverse numerical
simulations) (e.g., Minson et al., 2013; Li et al., 2017; Shi et al.,
2020; Itoh et al., 2021; Ortega-Culaciati et al., 2021; Rointan et al.,
2021) are used to characterize the processes responsible for
crustal deformation. However, forward models, which rely on
state-of-the-art approximations of the underlying physics, are
computationally expensive, and inverse models often lead to
non-unique solutions. Notwithstanding, noise reduction (e.g.,
Dong et al., 2006; Mafakheri et al., 2022) and data exploration (e.g.,
Khasraji-Nejad et al., 2021; Mahdavi et al., 2021; Mousavi et al.,
2022) are key analyses that need to be carried out before any
forward or inverse simulation. Particularly for studies of crustal
deformation, an exhaustive inspection of observations can be a
time-consuming task, considering the decades long records of
hundreds or even thousands of GNSS stations located at some plate
boundaries.

Deformation in subduction zones is mainly controlled by
the seismic cycle of large (Mw > 8.0) megathrust earthquakes.
Thus, along a margin, we can simultaneously observe segments
at different phases of the seismic cycle (e.g., Klotz et al., 2001;
Lin et al., 2013). This deformation can have complex patterns,
from regional to continental scale, which is difficult to distinguish
without using time-series analysis or modeling surface velocities.
In general, the deformation related to the seismic cycle has
long wavelengths (>100 km) (e.g., Klein et al., 2016; Melnick et al.,
2017), so it can conceal local deformation patterns related to
structural factors such as crustal faults (e.g., Nasri et al., 2020)
or the effect of rheological changes in the fore-arc (e.g., Tassara
and Echaurren, 2012; Maksymowicz et al., 2018; Molina et al.,
2020). GNSS measurements provide valuable datasets to better
comprehend the seismic cycle and the margin deformation style,
including block motion and elastic, plastic and slow viscoelastic
deformation processes. The viscoelastic relaxation of the mantle
and the non-uniform compliance of the upper plate plays an
essential role in the deformation patterns of the fore-arc, which
can be revealed by modeling the processes of the seismic cycle
(e.g., Itoh et al., 2021). The increase in the number of GNSS stations
and long observation periods make it necessary to implement
modern techniques to robustly and efficiently identify patterns in the
deformation field that are not recognizable to the naked eye, without
the need to use complex models.

Clustering is a type of unsupervised learning methodology
that has been used to discover similarities among the data. This
autonomously assess how data are distributed in the feature
space (Géron, 2019). Previous studies have used various clustering
techniques to recognize patterns in time series (e.g., Wu et al., 2020)
and velocities derived from GNSS observations (e.g., Simpson et al.,
2012; Savage and Simpson, 2013; Thatcher et al., 2016; Granat et al.,
2021). The focus of these studies has been in California and Nevada,
where a direct relationship has been found between clustering
velocities and structural domains associated with active faults.
Motivated by these results and the advance in machine learning
techniques, in this work, we apply unsupervised classification
techniques to analyze the complex surface velocity field in areas of
the South American continent affected by the deformation of the
seismic cycle of large subduction earthquakes in Chile.

2 Seismotectonic setting

In the Chilean subduction margin the oceanic Nazca plate
obliquely (N77oE) subducts beneath the South American plate
at a convergence rate of 66 mm/yr (e.g., Altamimi et al., 2016)
(Figure 1). The interaction between the subduction of the Nazca
plate induces deformation of the upper plate and accumulation
and release of elastic energy in the megathrust, resulting in
surface deformation patterns tightly coupled to the seismic cycle
of large earthquakes. The measurements of displacements during
the interseismic period by GNSS provide a valuable datasets to
model the patterns of coupling degree on the plate contact (e.g.,
Moreno et al., 2010; Métois et al., 2012; Klein et al., 2018; Becerra-
Carreño et al., 2022) and characterize the upper plate style of
deformation (e.g., back-arc shortening, partitioning of deformation
by fore-arc slivers or active faulting) (Isacks, 1988; Wang et al.,
2007; Brooks et al., 2011; McFarland et al., 2017). The elastic strain
accumulation builds up over tens to hundreds of years, until it is
eventually released by earthquakes on the subduction megathrust.
Only in the last decade, three megathrust earthquakes of Mw > 8
have occurred in the Chilean subduction margin, these are the 2015
Mw 8.3 Illapel (e.g., Heidarzadeh et al., 2016; Tilmann et al., 2016),
2014 Mw 8.1 Iquique (e.g., Schurr et al., 2014; Duputel et al., 2015)
and 2010 Mw 8.8 Maule (e.g., Moreno et al., 2010; Lin et al., 2013)
(Figure 1). Nowadays, there are three major seismic gaps in the
Chilean margin: Northern Chile (20°S–23°S), Atacama (25°S–30°S)
and Valparaiso (32°S–34°S), associated to the 1877 (Ms ∼8.5), 1922
(Mw8.5) and 1730 (Ms8.7) great earthquakes, respectively (e.g.,
Comte and Pardo, 1991; Beck, 1998; Lomnitz, 2004; Ruiz and
Madariaga, 2018) (Figure 1).The earthquakes could trigger afterslip
(e.g., Lange et al., 2014) and a long-term viscoelastic relaxation
response of the mantle, as has been observed in 2010 Mw 8.8
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FIGURE 1
Location of the study zone. Orange ellipses represent the approximate rupture area of the earthquakes from the last 100 years in the region
(Delouis et al., 1997; Beck, 1998; Ruiz et al., 2016). Red squares represent cities and relevant coastal features. Blue arrow represent the convergence
velocity between Nazca and Sudamerica. Blue lines represents faults traces from (Maldonado et al., 2021). Colored regions represents the
morphostructures.

Maule earthquake in the form of westward GNSS velocities (e.g.,
Bedford et al., 2016; Klein et al., 2016). Moreover, the viscoelastic
mechanics of the underlying mantle affects the whole subduction
system with a pattern over a scale of several hundreds of kilometers
(Li et al., 2015; Shi et al., 2020; Itoh et al., 2021).

Interseismic interplate coupling (e.g., Moreno et al., 2010;
Wang et al., 2012; Klein et al., 2018; Becerra-Carreño et al., 2022;
Yáñez-Cuadra et al., 2022) induces contraction of the upper
plate that may have an influence on the long-term continental
deformation. The general shapes of the short- and long-term
shortening profiles are similar in the Altiplanic back-arc (e.g.,
Brooks et al., 2011), suggesting that the greatest strain is produced by
active shortening during the interseismic period. Thus, interseismic
processes may induce active continental deformation along the
Andes, as observed in the movement of fore-arc rigid blocks across
the Altiplano-Puna system (Figure 1) (e.g., Allmendinger et al.,

2007), the regional fault systems of the Atacama Fault Zone
(AFZ) in the fore-arc between 21°S and 30°S (Figure 1), and
strain partitioning due to strike-slip faulting along the Liquiñe-
Ofqui Fault Zone (LOFZ) (e.g., Beck, 1998; Wang et al., 2007)
in the volcanic arc between 37° and 47°S (Figure 1). These fore-
arc structures long precede the actual subduction, and their
origin lies from the Paleozoic accretion of terranes (e.g., Ramos,
2010), to Cretacic (AFZ) (e.g., Ruthven et al., 2020) and mid-
Eocene (LOFZ) (e.g., Aragón et al., 2011) tectonics. The interplay
between the subduction process and the continental plate structural
heterogeneity (e.g., Maksymowicz, 2015; Maksymowicz et al.,
2018; Molina et al., 2020) is expressed morphologically as
morphostructures (Figure 1). The morphostructures are regions
characterized by a certain stratigraphic succession, a structural style,
and peculiar geomorphological features that are the expression of
a particular geological history. Morphostructures have more or less
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defined limits, being able to present a transition with neighboring
geological provinces (Rolleri, 1976; Ramos, 1999). Thus, as shown
by strain analysis, themorphostructures could respond differently to
the strain produced by the subduction process (e.g., Rosenau et al.,
2006; Allmendinger et al., 2007; Cardozo and Allmendinger, 2009).

3 Data and methodology

We apply unsupervised machine learning techniques to analyze
the patterns in the crustal velocities registered by GNSS networks.
Particularly, we apply clustering algorithms, where the goal is
to group similar observations (instances) together into groups
(clusters). There are several clustering algorithms such as Birch
(Zhang et al., 1996) or K-means (Lloyd, 1982), for instance that
vary in methodological aspects regarding how the clusters are
formed. For this work, we choose the Agglomerative clustering
algorithm implemented in sklearn-scikit (Pedregosa et al., 2011).
This algorithm performs a hierarchical clustering using a bottom up
approach: each observation starts in its own cluster, and clusters are
successivelymerged together (Pedregosa et al., 2011).We useWard’s
linkage, a linkage criterion that serves as a measure of similarity
between sets of observations, to decide which clusters should be
merged. Thus, at each step, we test the linkage of a pair of clusters
to find the pair of clusters that leads to a minimum increase in the
total within-cluster variance after merging.

The Agglomerative clustering algorithm differs from other
algorithms such as K-means in that it does not start with a
random seed, so the clustering remains stable when re-running the
clusterization. It also differs fromother hierarchical algorithms, such
as Birch, in that it only requires the link criterion and the number of
clusters (k) as hyperparameters.

Pre-processing the data is a vital aspect of the machine learning
workflow, as it helps find hidden patterns in the data and thus leads
to better learning. Therefore, as input features for the Agglomerative
algorithm, this study explores two methodologies based on two
dataset of GNSS secular rates. The first method is based on the
velocities and it is similar to those applied by Simpson et al. (2012),
Savage and Simpson (2013), Thatcher et al. (2016), Granat et al.
(2021). For the second method, we developed a strategy to pre-
process GNSS velocities by calculating surface strain and rotational
rates to generate features to be clustered with machine learning.
Thus, the goal is to search for hidden patterns of the crustal motion
that can be associated with the shallow crustal structure of the
margin.

3.1 Dataset of GNSS secular rates

This study analyzes the surface velocity field derived from GNSS
observations for two time periods. The first dataset consists of
observations acquired prior to the years 2010 (24°S–45°S) and
2014 (18°S–24°S). These segments were in an interseismic phase
of the seismic cycle (e.g., Klotz et al., 2001; Moreno et al., 2008;
Ruegg et al., 2009) during these periods, except in the southern part
where the effects of prolonged postseismic deformation from the
great 1960 Valdivia earthquake were still being observed (Hu et al.,
2004). Between 2010 and 2015, the Chilean margin was affected by

three major earthquakes: Maule (Mw 8.8) in 2010 (Moreno et al.,
2010); Iquique (Mw 8.1) in 2014 (Schurr et al., 2014; Duputel et al.,
2015); and Illapel (Mw 8.2) in 2015 (Heidarzadeh et al., 2016;
Tilmann et al., 2016). These events produced a large coseismic
deformation as well as postseismic deformation. The second dataset
considers the period 2018–2021 in which there are still areas
with post-seismic effects from recent earthquakes and regions
undergoing interseismic contraction (Baez et al., 2018). These two
datasets allow us to investigate changes in the velocity field related to
the seismic cycle of large earthquakes on a decadal scale and explore
persistent patterns in surface deformation.

The pre-2014 dataset consists of a compilation of horizontal
velocities from survey-mode (sGNSS) and continuous GNSS
data (cGNSS) that characterize about a decade of observations.
This dataset is based on the one used by Becerra-Carreño et al.
(2022) but covering an area between 18°S and 45°S. The sGNSS
velocities are based on the compilation of Métois et al. (2016).
These include 325 sGNSS vectors published by Brooks et al. (2003),
Kendrick et al. (1999), Khazaradze and Klotz (2003), Ruegg et al.
(2009), Moreno et al. (2011), Métois et al. (2012), Métois et al.
(2013), Weiss et al. (2016). These velocities are estimated with
respect to the stable part of South America following Métois et al.
(2012). We processed GNSS observations from 123 continuous
stations using the processing strategy of Baez et al. (2018). From the
time series of continuous station time series, we estimate horizontal
velocities using the Bevis and Brown (2014) trajectory model. For
the period 2018–2021, we processed all available GNSS station
data (202 stations). We followed the same processing procedure
and time series analysis used for the pre-2014 period cGNSS data.
We transform all velocities estimated from the cGNSS time series
to a stable reference frame of the South American continent by
subtracting the rotational motion of a rigid plate using the Euler
pole defined by Métois et al. (2012). Thus, the sGNSS and cGNSS
velocities (Figure 2) are compatible since they are referenced to the
same reference frame.

The pre-2014 velocity field is relatively homogeneous
(Figure 2A), with most of the margin (18°S–38°S) showing typical
interseismic contraction patterns, i.e., directions parallel to the
plate convergence vector and magnitudes decreasing landward.
In the extreme north (18°S–24°S), the deformation extends almost
500 km from the coast, with velocities that decrease drastically on
the eastern slope of the Andes. This gradient has been interpreted
as deformation related to crustal shortening in the back-arc margin
of the Andes (e.g., Brooks et al., 2011; Weiss et al., 2016). South
of 38°S, the vectors show opposite directions, i.e., the vectors
near the coast move towards land, while the vectors in Argentina
move towards the trench. This segment is in a late postseismic
period, where interseismic compression predominates near the
coast (Hu et al., 2004). In contrast, in the back-arc, there are still
effects of viscoelastic relaxation induced by the 1960 earthquake,
which is visible over 50 years after this event (Moreno et al.,
2011). The 2018–2021 velocity field is more complex (Figure 2B),
showing that different segments are in different phases of the
seismic cycle. The 2010 Maule earthquake caused post-seismic
deformation of continental scale, as evidenced by the trenchward
vectors between 33°S and 40°S.The post-seismic effects of the Illapel
earthquake are of a local scale, only affecting areas very close to
the rupture zone (29°S–30°S). North of 30°S, the margin is in an
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FIGURE 2
Study zone map and the GNSS interseismic velocities used in this study. (A,C) show pre-2014 velocities, and (B,D) show 2018–2021 velocities.

interseismic period, and the effects of the 2014 earthquake are
only visible as lower magnitude velocities near the rupture zone
(19°S).

3.2 Velocity clustering

We start the analysis with a clustering approach using
the estimated horizontal velocities of the GNSS stations
straightforwardly as features. We express the directions of the
horizontal velocities as their unit vector (direction of the North
and East components with values between −1 and 1) and
norm (magnitude), thus considering three features for each GNSS
station. We show the flowchart of this methodology in the upper
part of the pre-processing stage of Figure 3. These features are
standardized previous to the clustering. As the number of clusters
(the hyperparameter k) need to be specified beforehand, we tested
5 to 10 clusters. The criteria used to choose k is based on the
competence between maximizing the number of clusters so more
information can be visualized while not desegregating the data too
much by having small clusters of less than ten stations. In doing so,
we choose the optimal value of k for each period (Figure 4) and show
the results of the other values of k in the Supplementary Material.

3.3 Surface strain and rotation rates
clustering

First, we calculate the velocity gradients from a linear expansion
of the surface velocity field around a point with velocity vo,

vi = vo + LΔi (1)

where vi = [viE viN]
⊤ is the horizontal velocity measured at the

i-th GNSS station, with relative location Δi = [Δi
E Δi

N]
⊤ from

the reference point with velocity vo = [voE voN]
⊤. Here, E and N

refer to the East and North directions, which define the basis
vectors of the coordinate system used to describe the velocities and
coordinates of the GNSS stations. L is the velocity gradient tensor,
i.e., the derivatives of the velocity field with respect to Easting (E)
and Northing (N). We use the method described by Cardozo and
Allmendinger (2009) to estimate the reference velocity vo and the
velocity gradients L. Here, the velocity data measured at n GNSS
stations to provide a constrain to the weighted least squares,

min
m

n

∑
i=1
‖wi (Gim− vi)‖2

2
(2)

where Gi, m and vi are defined by reordering Eq. 1. In such terms,
Gim correspond to the velocity prediction at the i-th GNSS station
(right hand side of Eq. 1), with design matrix

Gi = [
1 0 Δi

E Δi
N 0 0

0 1 0 0 Δi
E Δi

N
] (3)

and vector of unknown parameters

m = [voE voN LEE LEN LNE LNN] (4)

where LEE = ∂vE/∂E, LEN = ∂vE/∂N, LNE = ∂vN/∂E and
LNN = ∂vN/∂N are the components of the velocity gradient tensor L
(e.g., Davis and Titus, 2011).

The term wi = [

[

σ−1
viE

0

0 σ−1
viN

]

]
exp(− d

α
) is an importance weight

assigned to the velocity vi = [viE viN]
⊤, with standard deviations

σviE and σviN , measured at the i-th GNSS station, located at a
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FIGURE 3
Flowchart summarizing the different stages of the clustering analysis. In a first step, the two datasets of velocities are generated from the GNSS data,
then these two datasets are pre-processed using the two the methods presented in this work (i.e., clustering by velocity and strain-rotation). In a final
step, the features extracted from these datasets are clustered using the Agglomerative algorithm.

distance d = ‖Δi‖ from the reference point. Here, α is a constant
that controls how quickly the weight decays with the distance from
the reference point. It therefore controls the spatial scale at which
strain is estimated. The velocity vi of a GNSS station located at
a distance α from the reference point will have a weight of 0.34
relative to a weight of 1 for a station located at the reference point
(see Supplementary Figure S25). In the context of least-squares
inversion, such weighting is equivalent to assigning almost three
times the standard deviation (e.g., Tarantola, 2005) to such GNSS
velocities.Thus, velocity gradient estimates aremostly representative
of an homogeneous deformation and rotation occurring within a
distance ∼ α from the reference point.

The estimated velocity gradient tensor L can be decomposed as

L = ω̇+ ̇ε (5)

where the rotation rate tensor ω̇ = 1
2
(L− L⊤) is the skew-symmetric

part of L and represents a rotational crustal motion, while Cauchy’s
strain rate tensor ̇ε = 1

2
(L+ L⊤) is the symmetric part of L and

models surface velocities due to strain rate.
From ω̇ and ̇ε, a set of features for the clustering algorithm are

calculated. From the rotation rate tensor ω̇, we extract the vertical
vorticity (e.g., Davis and Titus, 2011) as,

wz = 2ω̇NE = LNE − LEN =
∂vN
∂E
−
∂vE
∂N

(6)

which indicates the magnitude and direction of the rotation
(around the vertical axis z) of the surface of the crust (positive
for anticlockwise rotation and negative for clockwise rotation).
Using the values of the deformation rate tensor ̇ε, we calculate the
first (I1) and third (I3) invariants, as their values are independent
of the choice of reference frame used to describe strain rates
(e.g., Timoshenko and Goodier, 1951). I1 is the trace of ̇ε and I3
is the determinant of ̇ε. The physical interpretation of I1 is the

volumetric deformation, where a positive value indicates dilatation
and a negative value indicates contraction. There is no clear physical
interpretation for I3, but it differentiates from I1 by accounting
for shear strain rates. It is worth mentioning that the features are
computed from velocity gradients that are in turn estimated using
velocities observed at spatially nearby GNSS stations. Thus, we are
indirectly adding local geographic information to the problem.

Problem (Eq. 2) can be solved to find the aforementioned
features (I1, I3, wz) for an arbitrary set of reference points. Typically,
an homogeneous grid is used (e.g., Allmendinger et al., 2007;
Cardozo and Allmendinger, 2009; Melnick et al., 2017). However, as
we aim to define such features to be used in a clustering algorithm,
we only estimate the features at the GNSS station locations, where
the original datasets are located. In that way, we calculate one feature
set per original velocity observation, avoiding generating an uneven
number of features associated to each original velocity observation,
due to a spatially heterogeneous distribution of the GNSS sites.

A fixed value of αmust be set previous to solving the linear least
squares inversion (Eq. 2) at a given reference point. Therefore, we
solve the problem for a range of tentative values of α from 10 to
650 km. We choose this range of values because values below 10
results in a highly heterogeneous velocity gradient field, due to α
being too similar to the shorter distances between GNSS stations.
We choose amore flexible upper limit of α, since higher values could
be necessary to solve the least squares problems in regions where the
distance between GNSS sites is larger. Then, we select the optimum
value of α as the one that maximizes the evidence of the least
squares problem solution (Sambridge et al., 2006). The evidence is
a mathematical model comparison method that incorporates the
principle of natural parsimony. Therefore, selects the best model as
the simpler one among those that fit equally well the observations,
being particularly good at avoiding overfitting, i.e., selecting models
that do not explain the noise in the observations. As a consequence
of using the evidence to select the best value of α at each GNSS
station, the spatial scale at which the features are estimated is related

Frontiers in Earth Science 06 frontiersin.org

https://doi.org/10.3389/feart.2023.1096238
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Yáñez-Cuadra et al. 10.3389/feart.2023.1096238

FIGURE 4
Velocity clustering results for the period pre-2014 with k = 7 (A–C) and the period 2018–2021 with k = 8 (E–G), and their respective polar
representations (D,H).

to the changes in density of GNSS instrument location across the
network. Thus, we obtain a smoother spatial distribution of features
at regionswith fewGNSS stations installed, andmore heterogeneous
feature distribution (as required by the data) at the denser parts of
the GNSS network.

We apply the Agglomerative clustering algorithm to the
estimated features at all GNSS station locations, and test a number
of clusters from 5 to 20 clusters. As with the velocity clustering
method, we leave an open discussion about the best number
of clusters, and discuss how this reflects the strain and rotation
distribution over the Andes. We show the flowchart of this
methodology in the lower part of the pre-processing steps in
Figure 3.

4 Results

4.1 Clustering by velocities

4.1.1 Period pre-2014
We show in Figure 4 the results for the clustering by velocities

for k = 7 and k = 8 for period pre-2014 and 2018–2021, respectively

(see Supplementary Material for results with others k). The main
clusters of the period pre-2014, indicated by blue, brown and
green circles in Figure 4, are associated with the variations of
the interseismic velocity field within the fore-arc and back-arc.
The green cluster (Figure 4B) contains the higher (>30 mm/yr)
eastward interseismic velocities in the dataset. The brown cluster
(Figure 4C) is composed of medium (∼18–30 mm/yr) interseismic
velocity segments, while the blue (Figure 4A) cluster holds low
(<18 mm/yr) eastward velocities in the back-arc and in the fore-arc
south of 38°S.

The smallest clusters are the purple, orange, pink, and
gray colored GNSS, which are related to local tectonics. The
orange cluster (Figure 4A) is composed of westward velocities
south of 38°S. The rest of the clusters for the period pre-2014
have higher velocities in the North-South direction. The pink
cluster (Figure 4B) comprises back-arc velocities with a clockwise
rotational component. The purple cluster (Figure 4C) is composed
of back-arc velocities in the north direction. Finally, the gray
cluster (Figure 4C) is composed of back-arc velocities with a
southwest direction. The latter seems to be associated with the
orange cluster, both affected by a clockwise rotation in the
back-arc.
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4.1.2 Period 2018–2021
The results for the period 2018–2021 are shown in the lower

panels of Figure 4. In the fore-arc, the orange cluster (Figure 4E)
is composed of interseismic northeastward velocities between 10
to ∼22 mm/yr in the fore-arc. This cluster covers areas close to the
rupture zones of the Iquique Mw8.1 2014, Illapel Mw8.3 2015 and
Maule Mw8.8 2010 earthquakes (e.g., Moreno et al., 2010; Lin et al.,
2013; Duputel et al., 2015; Heidarzadeh et al., 2016). In turn, the
red cluster represents the higher velocities in the dataset and is
composed of>22mm/yr northeastward velocities in the fore-arc and
it is found in the seismic gaps of the Northern Chile (20°S–23°S),
Atacama (23°S–28°S) and Valparaiso (32°S–33°S). Surprisingly, it is
also found in the Arauco peninsula at 38°S, which ruptured in the
Maule 2010 earthquake, suggesting a rapid re-coupling of this area
after this event.

In the back-arc, the pink cluster (Figure 4E) is composed of
northward velocities (< 10 mm/yr) mainly located in the Andes
at ∼32°S across the Precordillera morphostructure; this pattern
of velocities was not present in this area in the period pre-
2014. The green cluster (Figure 4F) represents westward velocities
(<25 mm/yr) in the fore-arc and back-arc near the rupture zone of
the Maule Mw8.8 2010 earthquake. The blue cluster (Figure 4F) is
composed of southward velocities (<10 mm/yr). The brown cluster
(Figure 4G) is composed of eastward velocities (<15mm/yr) in the
fore-arc at 18°S and 33°S, and in the back-arc between 23°S and 28°S.
The gray cluster (Figure 4G) is composed of very low (<5mm/yr)
northwest velocities and it scatteringly distributed through the back-
arc. Finally, the purple cluster (Figure 4G) is composed of very low
southwestward velocities (<5mm/yr) and it is distributed through
the back-arc.

4.2 Clustering by surface strain and
rotation rates

4.2.1 Surface strain and rotation rates
Figure 5 shows the evidence values for each trial α value used to

solve the least squares problem (Eq. 2) at eachGNSS station location.
The α values that maximize the evidence for each station range
between 50 and 650 km, beingmostly concentrated between 100 and
400 km for the pre-2014 dataset, and between 150 and 350 km for
the 2018–2021 dataset.

We show the estimated values for I1, I3 andwz for both periods in
Figure 6. For the period before 2014 (Figures 6A–C), these features
are dominated by a long wavelength signal that becomes more
heterogeneous south of 33°S.The I1 feature distribution (Figure 6A)
shows a northwest lineament in its values toward the Andes north
of 35°S, and north-south and east-west variations that the clustering
algorithm uses to determine data separation. In the pre-2014 period
(Figure 6), a maximum contraction (Figure 6A) and clockwise
rotation (Figure 6C) occur near the coast in front and to the south
of the 2010 (Mw8.8)Maule earthquake rupture zone (34°S–38°S, see
Figure 1), signals that decay towards the back-arc and to the north.
Figure 6B also shows that there is a boundary in the sign of the I3
values at 38°S, which coincides with the southern boundary of the
2010 Maule earthquake (Mw8.8).

The contraction signal south of 36°S of <− 100 ηε
yr

(nano-
strain per year) in the period before 2014 is produced by the
eastward velocities > 30 mm/yr (green cluster in Figure 4) in
the fore-arc combined by a low velocity in the back-arc (pink
and orange cluster in Figure 4). This is particularly interesting
since the comparison of I1 between both periods (Figure 7)

FIGURE 5
Evidence values for the least squares solution at each GNSS station (colored lines) for the range of values of α. Colored squares represent the α value
that maximizes the evidence for each station. Dataset period pre-2014 (A) and dataset period 2018–2021 (B).
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FIGURE 6
Features value. Pre-2014 I1 (A), pre-2014 I3 (B) and pre-2014 wz (C), 2018–2021 I1 (D), 2018–2021 I3 (E) and 2018–2021 wz (F).

shows that even after the 2010 Maule earthquake (Mw8.8), a
higher amount of contraction is found in the 2018–2021 period
in the same region. On the other hand, the contraction in the
area in front of the 2014 (Mw8.2) Iquique earthquake (∼20°S)
maintains an equal amount of contraction of ∼ −30 ηε

yr
in both

periods. Finally, in the zone in front of the 2015 (Mw8.3) Illapel
earthquake (30°S–32°S), the contraction decreases from ∼ −60 to
∼ −30 ηε

yr
(Figure 7), revealing a post-seismic relaxation in this

region.
The general decrease in the contraction occurs in almost the

entire margin, even in the arc and back-arc, with three exceptions.

Northward in the Valparaiso seismic gap (33°S), there is an increase
in contraction from −80 ηε

yr
in the pre-2014 period to ∼ −100 ηε

yr
in

the 2018–2021 period (Figure 7). Here, the increase in contraction
in the 2018–2021 period appears to be associated with a sharp
decrease in velocities between GNSS stations in the fore-arc (red
cluster in Figure 4E) and back-arc (brown cluster in Figure 4G),
where velocities decrease to <10 mm/yr. A similar behavior occurs
in the Atacama seismic gap, where there is an increase in contraction
from −50 to −80 ηε

yr
. Finally, the maximum increase in contraction

between the periods is found at 37°S with an increase from −125 to
−175 ηε

yr
.
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FIGURE 7
I1 feature value for both periods colored with the same color scale. Pre-2014 (A), 2018–2021 (B).

4.2.2 Clustering
We present the results of clustering by I1, I3 and wz in Figure 8,

showing the clustering configuration for two different number of
clusters (k = 9 and k = 15) for the pre-2014 period. The results
for other values of k and the cluster analysis for the period
from 2018 to 2021 are presented in the supplementary material
(Supplementary Figures S9–S24).

Our results suggest that the spatial distribution of the strain-
based clusters in the fore-arc is correlated with the rupture
zones of the earthquakes, and in turn follows a northwesterly
lineament that crosses the Andes. By following these lineament, the
clusters distribution correlates with some important limits of the
morphostructures.

In the clustering with k = 9 (Figure 8A), it is possible to observe
a first-order latitudinal separation of the clusters. This boundary
is at 32°S, where the northern segment is composed by the blue
and black clusters, while southern segment is composed by the
pink, dark blue, orange, brown, green, red, and purple clusters.
In the northern segment, two clusters follow the Valle Fertil and
San Rafael northwest lineaments (Jacques, 2003). Here, the black
cluster is mainly found in the Altiplano-Puna, Domeyko Cordillera,
Western and Eastern Cordillera, Subandean Range and Sierras

Pampeanas morphostructures. In turn, the blue cluster is found in
front of the ruptures of the 1922 Mw8.5 Atacama and 2015 Mw8.4
Illapel earthquakes, and the morphostructures of the Cordillera
Frontal and Precordillera. These clusters are also correlated with the
disappearance of the volcanic arc between 28°S and 32°S due to the
presence of the flat slab. The blue cluster is also found locally in the
Subandean Range and in the Patagonian Cordillera.

The second group of clusters is located south of 33°S, where the
flat slab ends and the Southern Volcanic Zone begins (Figure 8A).
The pink cluster limits the first group of cluster and follows the
northwest trend in northern Chile. To the south of the pink cluster,
the clusters in this second group no longer follow a north-west
lineament, but instead follow north-south (green and red clusters)
to east west (brown cluster) lineaments. The pink and the dark
blue clusters are located in the Valparaíso seismic gap. The orange-
blue cluster correlates with the rupture of the 2010 (Mw8.8) Maule
earthquake and coincides with the limits of the velocity-based
green cluster of Figure 4. The brown and purple clusters follow
an east-west lineament in the fore-arc that correlates with the
boundary between the Maule and Valdivia earthquakes and the
beginning of the Patagonian Cordillera. The red cluster follows
a north-south lineament in the northern part of the Patagonian
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FIGURE 8
Clustering by I1, I3 and wz for the period pre-2014 with k = 9 (A) and k = 15 (B). Blue lines represents faults traces from (Maldonado et al., 2021). Colored
regions represents the morphostructures. Orange ellipses represent the approximate rupture area of the earthquakes from the last 100 years in the
region (Delouis et al., 1997; Beck, 1998; Ruiz et al., 2016). Dotted red lines represents the Valle Fertil and San Rafael lineaments of (Jacques, 2003).

Cordillera, characterized by the presence of the LOFZ, which
controls volcanism in the region (Cembrano and Lara, 2009).
The green cluster is located in the fore-arc close to the coastline
along the 1960 Mw9.5 Valdivia rupture zone. Finally, the dark
blue cluster is also found in the southern part of the LOFZ. This
clustering shows the effects on the strain and rotation field of the
deformation processes of the seismic cycle and the possible motions
in the LOFZ recorded in the GNSS displacements (e.g., Wang et al.,
2007).

The highest correlation with local structures is produced when
k = 15 (Figure 8B). Here, some clusters disaggregate with the
increasing of k without changing the overall limits between the
clusters. Following the description for each cluster, the principal
differences with k = 9 lies in the division of the black cluster
(Figure 8A) into the orange and light brown clusters (Figure 8B).
This separation divides the structural styles of the Altiplano-Sierras
Pampeanas with the Domeyko Cordillera-Puna in the arc and back-

arc. The orange cluster also correlates with the rupture of the 2014
Mw8.1 Iquique earthquake from the north of Chile seismic gap and
correlates with the green and brown clusters of Figures 4B, C, which
shows a decrease in interseismic velocities at 20°S. Another good
correlation, occurs in the division of the blue cluster (Figure 8A) at
∼32°S into the brown and black clusters (Figure 8B), which continue
the expression of the northwest lineament of the nearby clusters. In
the same region, the pink cluster (Figure 8A) is divided into the light
green and the white clusters in the southern part of the Neuquen
Basin (Figure 8B). The dark blue cluster (Figure 8A) splits into the
dark blue and pink clusters at 44°S (Figure 8A). Finally, the clusters
with less morphostructural spatial correlation are found in front of
the Maule Mw8.8 earthquake. Here, the orange cluster (Figure 8A)
is divided into the dark brown and red clusters. A similar case is the
green cluster (Figure 8A) that is divided into the green and the light
blue clusters in the Subandean Range (Figure 8B) and on the coast
at 43°S.
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5 Discussion

The two analyses based on velocities and strain/rotation
rates indicate that GNSS velocity clustering provides a tool for
characterizing active deformation patterns on a local to regional
scales. While velocity-based clustering helps to assess the different
deformation patterns of the seismic cycle, an increase in complexity
using strain rate invariants and rotation rates as features reveals
clusters associated with the Andean morphostructures, uncovering
segmentations hidden in the GNSS-derived velocity field. The
selection of two time periods of GNSS observations proved
helpful in verifying the spatial extent of deformation changes
due to postseismic effects and in exploring the stable patterns
between these two periods. However, a limitation of this work
is the determination of the optimal value of k, which affects
the number of clusters. While functions such as the Sillhuete
or the Calinski-Harabasz scores exist to determine the optimal
value of k in unsupervised learning, we found inconsistent
results when testing these functions. After extensive testing (see
Supplementary Material S3–S24), we chose the optimal k based on
a visual inspection of the results, and we decided on a number of
clusters that did not overfit the observations (k < 10 for velocity
clustering and k < 16 for strain and rotational clustering).

5.1 Velocity clustering

Previous studies (Simpson et al., 2012; Thatcher et al., 2016;
Granat et al., 2021) found a direct relationship between the velocity
clustering and style of deformation related to the San Andreas
strike-slip fault system in Nevada. But when applying a similar
methodology to the Chilean subduction zone, the results show
instead the patterns of seismic cycle deformation (interseismic,
postseismic, and back-arc shortening) at a regional to continental
scale. It demonstrates that the megathrust seismic cycle induces the
main patterns of active deformation in Chile. Here, the velocity
measurements may conceal smaller-scale deformation of very low
magnitude (a few mm/yr) related to shallow crustal faults. This can
explain why the links between GNSS velocities and crustal fault
displacement have only been found locally (Moreno et al., 2008;
Brooks et al., 2011; Weiss et al., 2016; McFarland et al., 2017) in the
Andes.

Among the patterns we found, one of the most interesting is
the segmentation by the magnitude of the eastward interseismic
velocities. Given that higher coupled seismic interface segments
generate higher eastward fore-arc velocities (e.g., Moreno et al.,
2010; Klein et al., 2018; Yáñez-Cuadra et al., 2022); we can relate
this segmentation to variations in the degree of coupling along
the Chilean margin. Nevertheless, this is only applicable if we
analyze segments in the same phase of the seismic cycle and
assume no significant heterogeneities in the physical media, such
as subducted ridges or rheological variations in the upper plate
(Tassara et al., 2016; Molina et al., 2020). Therefore, some variations
between segments with similar patterns may be related to the effects
of rheological heterogeneities (e.g., Li et al., 2017; Itoh et al., 2021).

It has been proposed that the subduction of irregular oceanic
structures, such as ridges, would promote interseismic aseismic slip

and hence a less coupled interface (Wang and Bilek, 2014). This
decrease in the interseismic velocities is observable in the clustering
of the pre-2014 data in areas where the ridges of Iquique, Copiapo,
and Juan Fernandez subduct (Figure 4). The only exception is
the subduction of the Taltal Ridge. Nevertheless, recent coupling
models in the region of Atacama (Yáñez-Cuadra et al., 2022) find
no decrease of coupling associated with the subduction of the Taltal
ridge.

The lower velocities in Valdivia observed in the pre-2014 dataset
could be explained by the prolonged postseismic deformation
after the 1960 giant earthquake (e.g., Hu et al., 2004). As has
been shown by GNSS-derived postseismic displacements (Hu et al.,
2004; Moreno et al., 2011; Klein et al., 2016; Melnick et al., 2017),
rotational movements in the fore-arc could be associated with
a postseismic response of the viscoelastic mantle. This effect
can explain the southward velocity component in the back-arc
represented by the gray and pink clusters (Figure 4A). Moreover,
the clusters shown in Figure 4 indicate that the velocity patterns
in the fore-arc at south of 38°S are similar to those in the back-
arc north of 38°S. The velocities in this region are significantly
slower than the rest of the margin. Toward the Andes, the eastward
velocities decrease rapidly to the point where displacements in the
back-arc change direction to westward. As shown in Li et al. (2015);
Shi et al. (2020); Yáñez-Cuadra et al. (2022), the phenomenon of
overlapping between deformation caused by viscoelastic and elastic
processes could mislead the modeling and interpretation of GNSS
observations. Moreno et al. (2011) found a late viscoelastic response
from the 1960 Mw 9.5 Valdivia earthquake that affects not only
the back-arc westward velocities, but also the fore-arc, where
most of the interseismic deformation produced by subduction
interplate coupling occurs. As interplate coupling produces eastward
dominated motion on the overriding plate, a highly coupled
subduction interface could be hidden by apparently slow fore-arc
velocities due to such competing processes.

5.2 Surface strain and rotation rates
clustering

Because we infer the features at each GNSS site using
information from the neighboring stations, we indirectly introduce a
geographical bias into the clustering results.This raises the question:
are the resulting clusters influenced by the spatial distribution of
the GNSS instruments, or are they mainly driven by their velocity
observations? To validate our results, we perform a clustering based
only on the location (latitude and longitude) of theGNSS stations for
k = 9 and k = 15 (see Supplementary Material S1, S2). The results
of the exercise show that only in a few cases the clustering by
strain invariants/rotation rates and the clustering by geographical
position outcomes match. This is at ∼21°S and ∼25°S in the fore-
arc (k = 9 and k = 15) and at ∼30°S in the back-arc. We also test
the relevance of each feature in the clustering, by converting the
unsupervised clustering problem into a supervised classification
problem using a random forest classifier (Ho, 1995).This is achieved
by training a classifier to discriminate between each cluster and then
extracting the feature importance from the model. The relevance of
the features for k = 9 and k = 15 is I1 = 0.38,wz = 0.35, I3 = 0.27, and
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I1 = 0.37, wz = 0.35, I3 = 0.27 respectively. Thus, showing that the
three calculated features are relevant to the clustering process.

We highlight the application of the evidence to determine the α
value used to estimate the clustering features at each GNSS station.
The value of α defines the weights of the velocities of nearby GNSS
stations used to constrain the velocity gradient tensor (L)—and
therefore the features used for clustering—when solving the least
squares problem (Eq. 2). Typically, a single value of α has been
used for the whole GNSS network (e.g., Allmendinger et al., 2007;
Melnick et al., 2017). However, such approach does not account for
the heterogeneous spatial distribution of the stations in the GNSS
network. Instead, in this study we determine a different α value
for each GNSS station when estimating its features. By maximizing
the evidence, our method seeks to find the best α based on the
parsimony principle, balancing measures of data misfits, as well as
uncertainties of data and estimated parameters. Those uncertainties
depend - in particular - on the relative locations of the involved
GNSS stations. Thus, our work presents an improved methodology
to estimate L at each GNSS station, that accounts for the spatial
heterogeneity of the GNSS network. As an example, Figure 6 shows
that in each period the features I1, I3 and wz can be estimated with
sharper spatial variations at the denser parts of the GNSS network.
Additionally, the spatial scales that define the variations of the
features used for clustering (Figure 6) are of the order of hundreds
of kilometers. These scales are similar to those of the deformation
patterns produced by the governing sources in themargin: interplate
interseismic deformation, viscoelastic deformation and back-arc
shortening. Between these sources of deformation, the interplate
interseismic deformation presents smooth spatial variations (e.g.,
Métois et al., 2016; McFarland et al., 2017), and even the viscoelastic
deformation is usually modeled using linear viscoelastic models
(Li et al., 2017) that can sometimes be approximated by a linearly
varying model (Yáñez-Cuadra et al., 2022). But even in the case of
a more complex scenario with velocities presenting a less smooth
spatial pattern, α values determined by the evidence should be lower
since the evidence follows the principle of parsimony, with resulting
features that can be lately clustered.

The visualization of the velocities, rotation rates, strain rates
and their invariants (Figures 2, 6) sometimes can be useful to
find spatial patterns in them. However, more subtle patterns may
not be clearly visible by the naked eye. Particularly for our study,
the proposed clusterization analysis is useful to elucidate patterns
of strain concealed within the GNSS velocities. Additionally, such
an approach eliminates the possibility of inconsistencies due to
personal biases that may appear as the result of a mere visual
inspection of such features.

Ideally, GNSS observations can be used to improve our
understanding of the underlying physical processes by finding
and interpreting a quantitative physical model able to predict
such observations. Nevertheless, such physical models are often an
approximation of the true physics, limited by the current knowledge
and computational capabilities. Here, the clusterization analysis
provides a powerful statistical tool to identify key characteristics
of the data and qualitatively relate these with current knowledge
without an explicit modeling of the causative physics. Therefore, we
focus on analyzing the relations found between the clusterization
of the features computed from GNSS data and the physical

and geological aspects currently known about the subduction
environmnet at the study area.

The proposed seismic segmentation of Molina et al. (2020)
concludes that there is a correlation between the extent of large
earthquakes and anomalous structural features of both converging
plates. Thus, faults and geological composition could play a role in
the diffusion of convergence induced stress in the crust, which in
turn could be reflected in the crustal strain patterns. We visualize
that clusterized strain and rotation rates in the fore-arc are correlated
with the extent of earthquake ruptures. The boundaries between
such clusters extend to the arc and back-arc along the long-term
northwest-trending lineaments of the structural discontinuities
(e.g., Ramos et al., 2002; Jacques, 2003). These lineaments show
evidence of neotectonic activity (Ortiz et al., 2015; Perucca et al.,
2018; Rothis et al., 2019) and are related to three limits between
the clusters shown in Figure 8A. The first one is the northwest
lineament of Valle Fertil, expressed by the boundary between the
black and blue clusters (Figure 8A).The projection of this lineament
continues roughly to the fore-arc. This division expresses the
difference between the structural domains of the Sierras Pampeanas
and Precordillera, the Frontal Cordillera and Western Cordillera,
and with the northern boundary of the 1922 Mw8.5 earthquake in
the fore-arc.

The second limit is the northwest lineament of San Rafael
that is expressed by the boundary between the blue and pink
clusters (Figure 8A). This limit in the arc is related to the difference
between the structural domains of the Frontal Cordillera and
Principal Cordillera, and also to the transition between the Central
and Southern Andes. To the fore-arc, the continuation of the
lineament coincides with the southern boundary of the 2015 Mw
8.4 earthquake. On the side of the Nazca Plate, this point also
marks the change in the continental wedge, which is characterized,
between Arica (∼20°S) and the subduction of the Juan Fernández
Ridge (∼32°S), as an erosive margin, as evidenced by the low trench
sedimentation, the absence of the accretionary prism, and a steep
slope (Maksymowicz, 2015).

Finally, further south (∼37°S), the third limit is marked by
the presence of the blue cluster in Figure 8B, which resembles
the northern section of the trace of the LOFZ in the Patagonian
Cordillera. The Patagonian Cordillera is characterized not only
by the presence of the LOFZ, but also by the North Patagonian
Batholith, given its basement composition (e.g., Echaurren et al.,
2016) and by its role controlling the volcanism in the Southern
Volcanic Zone of the Andes (Cembrano and Lara, 2009).

6 Conclusion

Our work highlights the power of combining optimization and
machine learning methods to better understand the strain and
rotation patterns in the subduction margin and their interplay
with the geology and long term structural domains. We start
by applying a clustering approach—similar to that used by other
authors—to study the velocity distribution of the GNSS-network in
the Chilean subductionmargin. In the process, we developed a novel
methodology to estimate crustal surface strain and rotations (rates)
that accounts for the spatial heterogeneities of the GNSS network.
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The velocity clustering results indicate a first order relation to
the phases of the seismic cycle, delineating regions with different
patterns of postseismic and interseismic deformation. On the other
hand, clustering based on strain invariants and rotation rates, shows
a link between the seismic segmentation in the fore-arc and the
geological and structural domains in the arc and back-arc. The
latter can be recognized by the clusters associated with different
morphostructures and cluster boundaries similar to the northwest
lineaments of structural discontinuities.
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